Alpha-1-adrenoceptor subtype selective regulation of connexin 43 expression in rat cardiomyocytes.

Naunyn Schmiedebergs Arch Pharmacol

Clinic for Cardiac Surgery, University of Leipzig, Struempellstr. 39, 04289 Leipzig, Germany.

Published: March 2008

AI Article Synopsis

  • Connexin43 (Cx43) is key for heart cell communication, impacting electrical activation through gap junctions.
  • A study explored how the alpha1-adrenoceptor affects Cx43 levels using phenylephrine, finding it significantly increased Cx43 expression, leading to improved gap junction conductivity.
  • Different alpha1-adrenoceptor antagonists had varying effects on this increase, with BMY7378 showing strong inhibition, while RS17053 had minimal impact on Cx43 expression.

Article Abstract

Connexin43 (Cx43) is the predominant intercellular gap junction protein in the heart providing intercellular communication for the cell-to-cell transfer of electrical activation. In a previous study, we could show that alpha-adrenoceptor stimulation can affect Cx43 expression and function. We now wanted to elucidate which alpha1-adrenoceptor subtype might be involved. Cultured neonatal rat cardiomyocytes were exposed to various concentrations of phenylephrine (0.1-1,000 nM) for 24 h (n=6). Thereafter, cells were harvested, and after lysis, Cx43 content was determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot. Results were normalised to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Finally, we determined the effect of this treatment on intercellular gap junction conductivity using dual whole-cell voltage clamp. Similarly, we tested the effect of an additional treatment with either 10 nM prazosin or, to assess the subtypes, 10 nM of the alpha(1A)-antagonist RS17053 (n=6), 500 nM of the alpha(1B)-antagonist AH1111OA (n=6), or 50 nM of the alpha(1D)-antagonist BMY7378 (n = 6). Moreover, we incubated the cells for 24 h with the alpha(1A)-adrenoceptor agonist A61603 (10 nM). Phenylephrine led to enhanced Cx43 expression with a pEC50 8.00+/-0.06. The other cardiac connexins, Cx40 and Cx45, as well as GAPDH were not affected. This increase in Cx43 expression resulted in enhanced gap-junction conductance (44+/-4 nS vs 26+/-4 nS). As expected, the increased Cx43 expression could be antagonized by prazosin. Moreover, it was nearly completely inhibited by BMY7378 but was not significantly affected by RS17053. AH1111OA led to a moderate but incomplete inhibition. In contrast, beta-actin expression was also up-regulated by phenylephrine but was inhibited by prazosin or RS17053, while it was not affected by BMY7378 or AH1111OA. About 24 h exposure to the alpha(1A)-adrenoceptor agonist A61603 led to a twofold increase in beta-actin but did not affect Cx43. The low pEC50 value of about 1 nM for noradrenaline reported in our earlier study fits well to the hypothesis of an effect mediated predominantly via alpha(1D)-adrenoceptors, which is further supported by the finding of a nearly complete antagonisation of the phenylephrine effect by BMY7378. Thus, we conclude that cardiac Cx43 expression seems to be regulated via alpha(1)-adrenoceptors predominantly by subtype alpha(1D)-adrenoceptors, while other proteins like beta-actin seem to be regulated via alpha(1A)-adrenoceptors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-007-0244-9DOI Listing

Publication Analysis

Top Keywords

cx43 expression
20
rat cardiomyocytes
8
cx43
8
intercellular gap
8
gap junction
8
affect cx43
8
alpha1a-adrenoceptor agonist
8
agonist a61603
8
expression
7
alpha-1-adrenoceptor subtype
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!