Any kind of blue-green alga produces metabolites of musty substances and toxins. Therefore, it is necessary to remove the blue-green algae, and processing also including nutrient removal is desired for the water quality improvement of eutrophic lakes. The purpose of this study has been to investigate the possibility of a flotation system using a hybrid technique (chemical compounds and electrostatic bridge) applied to raw water containing phytoplankton with high pH of water, and to examine the zeta potential value of phytoplankton surface and the removal efficiency for phytoplankton, ammonia, nitrogen, and phosphoric acid. The results were as follows: firstly, zeta potential of M. aeruginosa particles was observed to achieve charge neutralization on their surface by adhesion of magnesium hydroxide precipitation with increasing pH. Secondly, maximum removal efficiency concerning chlorophyll-a was observed as 84%, and this efficiency was obtained in the condition of pH > 10, and magnesium hydroxide precipitation was observed. Thirdly, in the pH condition that the maximum removal efficiency of chlorophyll-a was obtained, the removal efficiency and the amount of decrease of NH(4)-N and PO(4)-P before and after the change of pH values were observed as 6.7% (0.04 mg-P/L) and 63.6% (0.07 mg-N/L), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2008.787 | DOI Listing |
Integr Environ Assess Manag
January 2025
European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium.
SimpleTreat has become a common tool used in ecological risk assessments to estimate the removal efficiency of a chemical from a secondary wastewater treatment plant and hence inform on release to the environment. Organization A, Organization B, and Organization C performed a comparative study of SimpleTreat predictions and parameter selection methodologies across the three organizations. SimpleTreat versions 3.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.
View Article and Find Full Text PDFAdv Appl Bioinform Chem
January 2025
Department of Information Technology, Mutah University, Al-Karak, Jordan.
Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at different stages.
Patients And Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports (6,280 cancer and 13,257 noncancer cases).
Heliyon
July 2024
School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Metformin (MET), a commonly prescribed medication for managing type 2 diabetes, has demonstrated various beneficial effects beyond its primary anti-diabetic efficacy. However, the mechanism underlying MET activity and its distribution within organelles remain largely unknown. In this study, we integrate multiple technologies, including chemical labeling, immunostaining, and high-resolution microscopy imaging, to visualize the accumulation of MET in organelles of cultured cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering and Conn Center for Renewable Energy ResearchUniversity of Louisville, 132 Eastern Parkway, Louisville, Kentucky 40292, United States.
We report a silicon anode for lithium-ion batteries consisting of a layer of 100% nanotubes directly bonded to copper foil. The process involved silicon deposition on a sacrificial zinc oxide nanorod film and removal of zinc oxide to produce a nanotube film directly on thin copper foils. The thickness of resulting films ranged from 9 to 20 μm with Si nanotubes having diameters of 200-400 nm and lengths of 2-10 μm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!