In this study, Fe, Cr and Ni have been preconcentrated and removed by using N,N'-ethylenebis (ethane sulfonamide), (ESEN) ligand on activated carbon (AC) in aqueous solution. For this purpose, complexes between these metals and ligands have been investigated and used in preconcentration and removal studies. Factors which have affected adsorption of metals on activated carbon have been optimized. Adsorbed metals have been preconcentrated 10-fold and determined by ICP-OES. Interferences of Ca, Mg and K to this process have been investigated. The proposed method has been applied to the tap water and Ankara Creek water in order to Fe, Cr, and Ni remediation and preconcentration. Determination of metals by ICP-OES has been checked with standard reference material (NIST 1643e). The proposed method provides the recoveries of 87%, 108% and 106% for Fe, Cr and Ni, respectively, in preconcentration. It also provides the removal of Fe, Cr and Ni by 93%, 100% and 100% removal from waters, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2007.11.107 | DOI Listing |
Electrophoresis
January 2025
Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia.
Advancements in food technology have increased the need for thorough analysis to ensure food safety, quality, and compliance with regulatory requirements. Capillary electrophoresis-mass spectrometry (CE-MS) has emerged as a powerful tool in food analysis due to its high separation efficiency, low sample consumption, and ability to handle complex matrices. However, challenges such as the use of volatile running buffers and maintaining the stability of the electrical circuit connecting the CE and MS systems have been addressed through advancements in interface designs, such as sheathless systems and optimized sheath-liquid compositions.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Ocean Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China. Electronic address:
The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO) electrodes enhanced with oxygen vacancy (O) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.
View Article and Find Full Text PDFMolecules
November 2024
Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa.
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed.
View Article and Find Full Text PDFAnal Bioanal Chem
February 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
Simultaneous removal and identification of trace-level cationic dye pollutants from water is both important and challenging owing to their highly polar and complex sample matrices. In this study, three covalent organic frameworks (COFs) were synthesized using 2, 4, 6-triformylphloroglucinol with ethidium bromide (EB) containing positively charged groups, 3, 5-diaminobenzoic acid (DABA) containing negatively charged groups, and p-phenylenediamine (Pa) lacking charged groups. These were named EB-COFs, TpPa-1, and DP-COFs, respectively, and were employed as adsorbents for the extraction and identification of cationic dyes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!