Pyrrolo[3,4-c]carbazoles bearing solubilising basic side chains at the 8-position retain potent Wee1 and Chk1 inhibitory properties in isolated enzyme assays, and evidence of G2/M checkpoint abrogation in several cellular assays. Co-crystal structure studies confirm that the primary binding to the Wee1 enzyme is as described previously, with the C-8 side chains residing in an area of bulk tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2007.12.046 | DOI Listing |
Drug Res (Stuttg)
January 2025
Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
WEE1 is a key tyrosine kinase involved in the cell cycle regulation with potent anticancer effects in various cancer types including colorectal cancer. Recent studies have focused on the potential of combinational inhibition of Ataxia Telangiectasia and Rad-3-related protein (ATR) and WEE1 in increasing apoptosis in cancer cells. Therefore, this study investigates the effects of inhibiting WEE1, by employing AZD1775, on colorectal cancer cells' susceptibility to VE-822-induced DNA damage and apoptosis.
View Article and Find Full Text PDFNeurooncol Adv
November 2024
Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Western Australia, Australia.
Background: Glioblastoma, a lethal high-grade glioma, has not seen improvements in clinical outcomes in nearly 30 years. Ion channels are increasingly associated with tumorigenesis, and there are hundreds of brain-penetrant drugs that inhibit ion channels, representing an untapped therapeutic resource. The aim of this exploratory drug study was to screen an ion channel drug library against patient-derived glioblastoma cells to identify new treatments for brain cancer.
View Article and Find Full Text PDFNat Cancer
December 2024
Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
Despite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. In the present study, we used 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detected transcription-dependent, replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs).
View Article and Find Full Text PDFBackground: We proposed to quantify reduction of functional DNA damage response (DDR) mechanisms caused by the combination of CHK1 and WEE1 inhibitors.
Methods: Survival of cells and tumor growth in-vitro and in-vivo caused by the combination of the CHK1 inhibitor SRA737 and the WEE1 inhibitor adavosertib was studied in OVCAR3 and MDA-MB 436 cells. Functional DNA damage was quantified using in vitro cell free DNA assays.
MedComm (2020)
November 2024
Laboratory of Preclinical Gynecological Oncology Department of Experimental Oncology Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!