The generation of ions from silicon substrates in surface-assisted laser desorption ionization (SALDI) has been studied using silicon substrates prepared and etched by a variety of different methods. The different substrates were compared with respect to their ability to generate peptide mass spectra using standard liquid sample deposition. The desorption/ionization processes were studied using gas-phase analyte deposition. Mass spectra were obtained from compounds with gas-phase basicities above 850 kJmol and with molecular weights up to 370 Da. UV, VIS, and IR lasers were used for desorption. Ionization efficiencies were measured as a function of laser fluence and accumulated laser irradiance dose. Solvent vapors were added to the ion source and shown to result in fundamental laser-induced chemical and physical changes to the substrate surfaces. It is demonstrated that both the chemical properties of the substrate surface and the presence of a highly disordered structure with a high concentration of "dangling bonds" or deep gap states are required for efficient ion generation. In particular, amorphous silicon is shown to be an excellent SALDI substrate with ionization efficiencies as high as 1%, while hydrogen-passivated amorphous silicon is SALDI inactive. Based on the results, a novel model for SALDI ion generation is proposed with the following reaction steps: (1) the adsorption of neutral analyte molecules on the SALDI surface with formation of a hydrogen bond to surface Si-OH groups, (2) the electronic excitation of the substrate to form free electron/hole pairs (their relaxation results in trapped positive charges in near-surface deep gap states, causing an increase in the acidity of the Si-OH groups and proton transfer to the analyte molecules), and (3) the thermally activated dissociation of the analyte ions from the surface via a "loose" transition state.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2802304DOI Listing

Publication Analysis

Top Keywords

desorption ionization
12
surface-assisted laser
8
laser desorption
8
silicon substrates
8
mass spectra
8
ionization efficiencies
8
deep gap
8
gap states
8
ion generation
8
amorphous silicon
8

Similar Publications

1,4-Dioxo-1,2,3,4-tetrahydrophthalazine-6-carboxylic acid as a novel MALDI matrix for enhanced analysis of metabolites induced by imidacloprid exposure.

Talanta

January 2025

Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China. Electronic address:

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become a robust tool for analyzing a variety of biomacromolecules. However, the strong background interference produced by conventional organic matrices hinders the detection of small molecule analytes, which restricts the widespread application of MALDI-MS in metabolomics studies. Consequently, developing new organic matrices is urgently needed to overcome these issues.

View Article and Find Full Text PDF

Normalization Based on Shift and Ion Intensity in SALDI-TOFMS Imaging of Samples with Non-Horizontal Surface.

Mass Spectrom (Tokyo)

December 2024

Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.

Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.

View Article and Find Full Text PDF

Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.

View Article and Find Full Text PDF

Background: Lower respiratory tract infections (LRTIs) are the most common infections in humans accounting for significant morbidity and mortality. Management of LRTIs is complicated due to increasing antimicrobial resistance. This study investigated the prevalence and trends of antimicrobial resistance for bacteria isolated from respiratory samples of patients with LRTIs.

View Article and Find Full Text PDF

Background: Stutzerimonas is a recently proposed genus comprising strains formerly classified as Pseudomonas stutzeri. The genus includes at least 16 identified species. Stutzerimonas nitrititolerans, previously known as Pseudomonas nitrititolerans, was initially isolated from a bioreactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!