Here we show the increase of invasion of three breast cancer cell lines (8701-BC, MDA-MB-231 and SKBR3) upon long-term co-incubation with culture medium of normal microvascular endothelial cells (MVEC) and normal breast epithelial cells (HB2). The enhancement of invasion relied on the interaction of microvascular endothelial cell and normal breast epithelial cell CXCL12 (SDF1) chemokine, whose expression by breast cancer cells was very low, with the cognate CXCR4 receptor of malignant cells, which resulted in over-expression of the urokinase-type plasminogen activator receptor (uPAR) on their surfaces. uPAR over-expression, showed by RT-PCR and Western blotting, was paralleled by increased urokinase-type plasminogen activator (uPA) partitioning on the cell surface with respect to the fluid phase, as demonstrated by zymography. Long-term interaction of SDF1 with CXCR4 stimulated sustained activation of JNK phosphorylation. Blocking antibodies to CXCR4 were able to block the endothelial/epithelial cell-dependent enhancement of invasion, as well as to inhibit SDF1-CXCR4-dependent JNK phosphorylation and uPAR over-expression of malignant cells. We suggest that acquisition of the angiogenic phenotype by breast cancer cells triggers an amplification loop, in which endothelial cells and normal breast epithelial cells of the tumour cooperate to provide facilitated routes to cell invasion and metastasis and to enhance the aggressive phenotype of cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.2309DOI Listing

Publication Analysis

Top Keywords

normal breast
16
breast epithelial
16
endothelial cells
12
epithelial cells
12
urokinase-type plasminogen
12
plasminogen activator
12
breast cancer
12
cancer cells
12
cells
11
cells normal
8

Similar Publications

Development of PROTACs targeting estrogen receptor: an emerging technique for combating endocrine resistance.

RSC Med Chem

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University Wuhan 430062 China

Despite the success of endocrine therapies in treating ER-positive breast cancer, the development of resistance remains a significant challenge. Estrogen receptor targeting proteolysis-targeting chimeras (ER PROTACs) offer a unique approach by harnessing the ubiquitin-proteasome system to degrade ER, potentially bypassing resistance mechanisms. In this review, we present the drug design, efficacy and early clinical trials of these ER PROTACs.

View Article and Find Full Text PDF

This chapter reviews tumor-associated myeloid cells, including macrophages, neutrophils, and other innate immune cells, and their multifaceted roles in supporting breast cancer progression and metastasis. In primary tumors, myeloid cells play key roles in promoting tumor epithelial-mesenchymal transition (EMT) and invasion. They can facilitate intravasation (entry into the bloodstream) and colonization, disrupting the endothelial cell layer and reshaping the extracellular matrix.

View Article and Find Full Text PDF

Hormone Signaling in Breast Development and Cancer.

Adv Exp Med Biol

January 2025

Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Hormones control normal breast development and function. They also impinge on breast cancer (BC) development and disease progression in direct and indirect ways. The major ovarian hormones, estrogens and progesterone, have long been established as key regulators of mammary gland development in rodents and linked to human disease.

View Article and Find Full Text PDF

Cells-of-Origin of Breast Cancer and Intertumoral Heterogeneity.

Adv Exp Med Biol

January 2025

Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Wurundjeri Country, Melbourne, Australia.

Both intrinsic and extrinsic mechanisms underpin the profound intertumoral heterogeneity in breast cancer. Increasing evidence suggests that the intrinsic characteristics of breast epithelial precursor cells may influence tumour phenotype. These "cells-of-origin" of cancer preside in normal breast tissue and are uniquely susceptible to mutagenesis upon exposure to distinct oncogenic stimuli.

View Article and Find Full Text PDF

Recording Lineage History with Cellular Barcodes in the Mammary Epithelium and in Breast Cancer.

Adv Exp Med Biol

January 2025

Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France.

Lineage tracing methods have extensively advanced our understanding of physiological cell behaviour in vivo and in situ and have vastly contributed to decipher the phylogeny and cellular hierarchies during normal and tumour development. In recent years, increasingly complex systems have been developed to track thousands of cells within a given tissue or even entire organisms. Cellular barcoding comprises all techniques designed to genetically label single cells with unique DNA sequences or with a combination of fluorescent proteins, in order to trace their history and lineage production in space and time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!