The temperature-induced budding of POPC-cardiolipin-cholesterol, POPC-POPS-cholesterol and POPC-POPG-cholesterol giant lipid vesicles in the presence of beta 2-glycoprotein I (beta 2-GPI) in the outer solution was studied experimentally and theoretically. The observed budding transition of vesicles was continuous which can be explained by taking into account the orientational ordering and direct interactions between oriented lipids. The attachment of positively charged beta 2-GPI to the negatively charged outer surface of POPC-cardiolipin-cholesterol, POPC-POPS-cholesterol and POPC-POPG-cholesterol giant vesicles caused coalescence of the spheroidal membrane bud with the parent vesicle before the bud could detach from the parent vesicle, i.e. vesiculate. Theoretically, the protein-mediated attraction between the membrane of a bud and the parent membrane was described as an interaction between two electric double layers. It was shown that the specific spatial distribution of charge within beta 2-GPI molecules attached to the negatively charged membrane surface may explain the observed attraction between like-charged membrane surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-007-0252-1DOI Listing

Publication Analysis

Top Keywords

negatively charged
12
beta 2-gpi
12
beta 2-glycoprotein
8
parent membrane
8
popc-cardiolipin-cholesterol popc-pops-cholesterol
8
popc-pops-cholesterol popc-popg-cholesterol
8
popc-popg-cholesterol giant
8
membrane bud
8
bud parent
8
parent vesicle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!