We have developed an on-line automated system for phosphoproteome analysis using titania-based phosphopeptide enrichment followed by nanoLC-MS/MS. Titania beads were prepared by calcination of commercial chromatographic titania beads at 800 degrees C to convert the crystalline structure. The obtained rutile-form titania exhibited higher selectivity in phosphopeptide enrichment than commercial titania, even in the absence of a competitive chelating reagent for non-phosphopeptides. For phosphoproteome analysis of human cervical cancer HeLa cells, tryptic digests of the cell extracts were directly injected into this on-line system, and 696 non-redundant phosphopeptides with 671 unambiguously determined phosphorylation sites, derived from 512 phosphoproteins, were successfully identified. This is the first successful application of an on-line automated phosphoproteome analysis system to complex biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.24.161DOI Listing

Publication Analysis

Top Keywords

phosphoproteome analysis
16
automated phosphoproteome
8
on-line automated
8
phosphopeptide enrichment
8
titania beads
8
analysis
4
analysis cultured
4
cultured cancer
4
cancer cells
4
cells two-dimensional
4

Similar Publications

Glioblastoma (GBM) is a devastating malignant brain tumor with a poor prognosis. GBM is associated with radioresistance. Post-translational modifications (PTMs) such as protein phosphorylation can play an important role in the cellular response to radiation.

View Article and Find Full Text PDF

Phosphoproteomic analysis of X-ray-irradiated planarians provides novel insights into the DNA damage response.

Int J Biol Macromol

January 2025

College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China. Electronic address:

Phosphorylation plays a crucial role in the cellular response to radiation and cancer therapies, yet phosphoproteomics studies in planarians remain underexplored despite the organism's remarkable regenerative capacities. This study utilized advanced ion mobility mass spectrometry for 4D-label-free quantitative proteomics to identify phosphorylation sites associated with irradiation in planarians. A total of 33,284 phosphorylation sites from 15,505 phosphorylated peptides and 4710 unique phosphoproteins were identified.

View Article and Find Full Text PDF

Loss of anticancer NK cell function in AML patients is associated with fatal disease progression and remains poorly understood. Here, we demonstrate that AML-blasts isolated from patients rapidly inhibit NK cell function and escape NK cell-mediated killing. Transcriptome analysis of NK cells exposed to AML-blasts revealed increased CREM expression and transcriptional activity, indicating enhanced cAMP signalling, confirmed by uniform production of the cAMP-inducing prostanoid PGE2 by all AML-blast isolates from patients.

View Article and Find Full Text PDF

Targeting TTK Inhibits Tumorigenesis of T-Cell Lymphoma Through Dephosphorylating p38α and Activating AMPK/mTOR Pathway.

Adv Sci (Weinh)

January 2025

Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.

T-cell lymphoma (TCL) is a group of non-Hodgkin's lymphoma with high heterogeneity and unfavorable prognosis. Current standard treatments have demonstrated limited efficacy in improving the outcomes for TCL patients. Therefore, identification of novel drug targets is urgently needed to improve the prognosis of TCL patients.

View Article and Find Full Text PDF

The regulation of PKC epsilon (PKCepsilon) and its downstream effects is still not fully understood, making it challenging to develop targeted therapies or interventions. A more precise tool that enables spatiotemporal control of PKCepsilon activity is thus required. Here, we describe a photo-activatable optogenetic PKCepsilon probe (Opto-PKCepsilon) consisting of an engineered PKCepsilon catalytic domain and a blue-light inducible dimerization domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!