The enzyme complexes involved in mitochondrial oxidative phosphorylation are organized into higher ordered assemblies termed supercomplexes. Subunits e and g (Su e and Su g, respectively) are catalytically nonessential subunits of the F1F0-ATP synthase whose presence is required to directly support the stable dimerization of the ATP synthase complex. We report here that Su g and Su e are also important for securing the correct organizational state of the cytochrome bc1-cytochrome oxidase (COX) supercomplex. Mitochondria isolated from the Delta su e and Delta su g null mutant strains exhibit decreased levels of COX enzyme activity but appear to have normal COX subunit protein levels. An altered stoichiometry of the cytochrome bc1-COX supercomplex was observed in mitochondria deficient in Su e and/or Su g, and a perturbation in the association of Cox4, a catalytically important subunit of the COX complex, was also detected. In addition, an increase in the level of the TIM23 translocase associated with the cytochrome bc1-COX supercomplex is observed in the absence of Su e and Su g. Together, our data highlight that a further level of complexity exists between the oxidative phosphorylation supercomplexes, whereby the organizational state of one complex, i.e. the ATP synthase, may influence that of another supercomplex, namely the cytochrome bc1-COX complex.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M708440200DOI Listing

Publication Analysis

Top Keywords

cytochrome bc1-cox
12
f1f0-atp synthase
8
synthase complex
8
state cytochrome
8
cytochrome bc1-cytochrome
8
bc1-cytochrome oxidase
8
oxidative phosphorylation
8
atp synthase
8
organizational state
8
bc1-cox supercomplex
8

Similar Publications

The ADP/ATP carrier (AAC) proteins play a central role in cellular metabolism as they facilitate the exchange of ADP and ATP across the mitochondrial inner membrane. We present evidence here that in yeast (Saccharomyces cerevisiae) mitochondria the abundant Aac2 isoform exists in physical association with the cytochrome c reductase (cytochrome bc(1))-cytochrome c oxidase (COX) supercomplex and its associated TIM23 machinery. Using a His-tagged Aac2 derivative and affinity purification studies, we also demonstrate here that the Aac2 isoform can be affinity-purified with other AAC proteins.

View Article and Find Full Text PDF

The enzyme complexes involved in mitochondrial oxidative phosphorylation are organized into higher ordered assemblies termed supercomplexes. Subunits e and g (Su e and Su g, respectively) are catalytically nonessential subunits of the F1F0-ATP synthase whose presence is required to directly support the stable dimerization of the ATP synthase complex. We report here that Su g and Su e are also important for securing the correct organizational state of the cytochrome bc1-cytochrome oxidase (COX) supercomplex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!