Mesenchymal stem cells (MSCs) derived from human bone marrow have capability to differentiate into cells of mesenchymal lineage. The cells have already been applied in various clinical situations because of their expansion and differentiation capabilities. The cells lose their capabilities after several passages, however. With the aim of conferring higher capability on human bone marrow MSCs, we introduced the Sox2 or Nanog gene into the cells. Sox2 and Nanog are not only essential for pluripotency and self-renewal of embryonic stem cells, but also expressed in somatic stem cells that have superior expansion and differentiation potentials. We found that Sox2-expressing MSCs showed consistent proliferation and osteogenic capability in culture media containing basic fibroblast growth factor (bFGF) compared to control cells. Significantly, in the presence of bFGF in culture media, most of the Sox2-expressing cells were small, whereas the control cells were elongated in shape. We also found that Nanog-expressing cells even in the absence of bFGF had much higher capabilities for expansion and osteogenesis than control cells. These results demonstrate not only an effective way to maintain proliferation and differentiation potentials of MSCs but also an important implication about the function of bFGF for self-renewal of stem cells including MSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2007.11.021 | DOI Listing |
J Transl Med
January 2025
State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.
Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.
J Clin Immunol
January 2025
Population Health Sciences Institute, Newcastle University, Newcastle-Upon-Tyne, UK.
Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) is widely expressed and integral to inflammatory and cell death responses. Autosomal recessive RIPK1-deficiency, due to biallelic loss of function mutations in RIPK1, is a rare inborn error of immunity (IEI) resulting in uncontrolled necroptosis, apoptosis and inflammation. Although hematopoietic stem cell transplantation (HSCT) has been suggested as a potential curative therapy, the extent to which disease may be driven by extra-hematopoietic effects of RIPK1-deficiency, which are non-amenable to HSCT, is not clear.
View Article and Find Full Text PDFCell Tissue Res
January 2025
College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.
Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
Skin epithelial stem cells correct aberrancies induced by oncogenic mutations. Oncogenes invoke different strategies of epithelial tolerance; while wild-type cells outcompete β-catenin-gain-of-function (βcatGOF) cells, Hras cells outcompete wild-type cells. Here we ask how metabolic states change as wild-type stem cells interface with mutant cells and drive different cell-competition outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedic Surgery at the First Affiliated Hospital, Harbin Medical University, Harbin, China.
Osteoporosis (OP) is a prevalent age-related bone metabolic disease. Aging and mitochondrial dysfunction are involved in the onset and progression of OP, but the specific mechanisms have not been elucidated. The aim of this study was to identify novel potential biomarkers associated with aging and mitochondria in OP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!