We report results from a field demonstration of a nonscanning high-speed imaging spectrometer [computed-tomography imaging spectrometer (CTIS)] capable of simultaneously recording spatial and spectral information about a rapidly changing scene. High-speed spectral imaging was demonstrated by collection of spectral and spatial snapshots of a missile in flight. This instrument is based on computed-tomography concepts and operates in the visible spectrum (430-710nm). Raw image data were recorded at video frame rate (30frames / s) and an integration time of 2ms. An iterative reconstruction of the spatial and spectral scene information from each raw image took 10s. We present representative missile spectral signatures from the missile firing. The accuracy of the high-speed spectrometer is demonstrated by comparison of extended-source static-scene spectra acquired by a nonimaging reference spectrometer with spectra acquired by use of CTIS imaging of the same static scenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.22.001271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!