We report on the optical storage of digital data in a semiconductor sample containing DX centers. The diffraction efficiency and the bit-error-rate performance of multiplexed data images are shown to agree well with a simple model of the material. Uniform storage without an exposure schedule is demonstrated. The volume sensitivity is found to be ~10(3) times that of LiNBO(3):Fe. The importance of coherent addition of scattered light with diffracted light in holographic data storage is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.22.001189 | DOI Listing |
Traditional numerical reconstruction methods in digital holography (DH) are faced with problems such as inaccurate and time-consuming unwrapping or the need to capture multiple holograms with different diffraction distances. In recent years, deep learning, believed to be a new and effective optimization tool, has been widely used in digital holography. However, most supervised deep learning methods require large-scale paired data, and their preparation is time-consuming and laborious.
View Article and Find Full Text PDFWe present a new methodology for measuring the gain and the linewidth enhancement factor of a semiconductor ridge-waveguide laser structure. The holographic methodology is based on a modified Mach-Zehnder interferometer. Compared with existing methods, the holographic setup allows to measure intensity and phase related properties such as optical gain and linewidth enhancement factor spectrally and spatially resolved.
View Article and Find Full Text PDFMulti-channel multiplexing metasurfaces have attracted considerable interest with the growing demand for multifunctional integration and enhanced communication capabilities. Dynamic tuning of electromagnetic waves with multiple degrees of freedom is a key approach to improving information processing capabilities. Metasurfaces with chiral meta-atoms and Janus metasurfaces with asymmetric transmission properties introduce new degrees of freedom for multiplexing technologies.
View Article and Find Full Text PDFGenerating large-scale holograms using computer-generated holography (CGH) requires vast memory resources, often exceeding available system memory. While out-of-core processing offers a solution, it introduces significant I/O bottlenecks during diffraction, a core operation in CGH. To address this challenge, we present the COMBO system, a novel out-of-core processing framework designed to accelerate large-scale diffraction computation.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!