Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To understand the mechanisms of neuronal Zn2+ homeostasis better, experimental data obtained from cultured cortical neurons were used to inform a series of increasingly complex computational models. Total metals (inductively coupled plasma-mass spectrometry), resting metallothionein, (65)Zn2+ uptake and release, and intracellular free Zn2+ levels using ZnAF-2F were determined before and after neurons were exposed to increased Zn2+, either with or without the addition of a Zn2+ ionophore (pyrithione) or metal chelators [EDTA, clioquinol (CQ), and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine]. Three models were tested for the ability to match intracellular free Zn2+ transients and total Zn2+ content observed under these conditions. Only a model that incorporated a muffler with high affinity for Zn2+, trafficking Zn2+ to intracellular storage sites, was able to reproduce the experimental results, both qualitatively and quantitatively. This "muffler model" estimated the resting intracellular free Zn2+ concentration to be 1.07 nM. If metallothionein were to function as the exclusive cytosolic Zn2+ muffler, the muffler model predicts that the cellular concentration required to match experimental data is greater than the measured resting concentration of metallothionein. Thus Zn2+ buffering in resting cultured neurons requires additional high-affinity cytosolic metal binding moieties. Added CQ, as low as 1 microM, was shown to selectively increase Zn2+ influx. Simulations reproduced these data by modeling CQ as an ionophore. We conclude that maintenance of neuronal Zn2+ homeostasis, when challenged with Zn2+ loads, relies heavily on the function of a high-affinity muffler, the characteristics of which can be effectively studied with computational models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00541.2007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!