The reaction of Cu2(O2CMe)(4).2H2O with tert-butylphosphonic acid and 3,5-di-tert-butylpyrazole in the presence of triethylamine leads to a high-yield synthesis of the tetranuclear compound [Cu2(3,5-t-Bu2PzH)2(t-BuPO3)2]2 (1). The latter has a distorted cubic cage structure and its core resembles the D4R (double-four-ring) motif found in zeolites. The phosphonate, [t-BuPO3]2-, functions as a dianionic tridentate ligand, while the pyrazole ligands are neutral and are monodentate. The coordination geometry at each copper atom is distorted square planar with a 3O,1N coordination environment. Magnetic measurements on 1 reveal that the chiT product continuously decreases to reach a value very close to zero at 1.8 K, indicating dominant antiferromagnetic interactions between Cu(II) ions that leads to an S=0 ground state. The tetranuclear cage 1 functions as a very effective artificial nuclease in the presence of an external oxidant, magnesium monoperoxyphthalate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic701948g | DOI Listing |
Adv Mater
January 2025
Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstraße 5, 04103, Leipzig, Germany.
Stable Sb exhibits a rhombohedral structure, often referred to as distorted primitive cubic, with each Sb atom having three short and three longer first neighbor bonds. However, this crystal structure can also be interpreted as being layered, putting emphasis on only three short first neighbor bonds. Therefore, temperature-dependent extended X-ray absorption fine structure (EXAFS) spectroscopy is carried out at the Sb K-edge in order to obtain more detailed information on local structural and vibrational properties.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Materials Physics Center, CSIC-UPV/EHU, Paseo de Manuel Lardizabal, 5, 20018 Donostia - San Sebastian, Spain.
Hybrid perovskites exhibit complex structures and phase behavior under different thermodynamic conditions and chemical environments, the understanding of which continues to be pivotally important for tailoring their properties toward improved operational stability. To this end, we present for the first time a comprehensive neutron and synchrotron diffraction investigation over the pressure-temperature phase diagram of the paradigmatic hybrid organic-inorganic perovskite methylammonium lead iodide (MAPbI). This ambitious experimental campaign down to cryogenic temperatures and tens of kilobars was supported by extensive molecular dynamics simulations validated by the experimental data, to track the structural evolution of MAPbI under external physical stimuli at the atomic and molecular levels.
View Article and Find Full Text PDFSmall
December 2024
Chemistry Department, University of Pavia, via Taramelli 16, Pavia, 27100, Italy.
The temperature-resolved structure evolution of quinary and quaternary equimolar oxides containing Mg, Ni, Zn, Co, and Cu is investigated by in situ synchrotron diffraction. Important structural modifications occur already at mild temperatures and depend on the elements involved. All quaternary compounds with χ(Cu) = 0.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Oxide superlattices reveal a rich array of emergent properties derived from the composition modulation and the resulting lattice distortion, charge transfer, and symmetry reduction that occur at the interfaces between the layers. The great majority of studies have focused on perovskite oxide superlattices, revealing, for example, the appearance of an interfacial 2D electron gas, magnetic moment, or improper ferroelectric polarization that is not present in the parent phases. Garnets possess greater structural complexity than perovskites: the cubic garnet unit cell contains 160 atoms with the cations distributed between three different coordination sites, and garnets exhibit a wide range of useful properties, including ferrimagnetism and ion transport.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Center of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LaPMET), Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO (BTO) and CoFeO (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO layer thickness (50-220 nm) on the films' structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO phase and a cubic spinel CoFeO layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!