A novel approach to microbial breeding--low-energy ion implantation.

Appl Microbiol Biotechnol

Henan University of Science and Technology, P.O. Box 471003, Luoyang, People's Republic of China.

Published: February 2008

Low-energy ions exist widely in the natural world. People had neglected the interaction between low-energy ions and material; it was even more out of the question to study the relation of low-energy ions and the complicated organism until the biological effects of low-energy ion implantation were discovered in 1989. Nowadays, the value of low-energy ion beam implantation, as a new breeding way, has drawn extensive attention of biologists and breeding experts. In this review, the understanding and utilization of microbial breeding by low-energy ion beam irradiation is summarized, including the characteristics of an ion beam bioengineering facility, present status of the technology of low-energy ions for microbial breeding, and new insights into microbial biotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-007-1312-2DOI Listing

Publication Analysis

Top Keywords

low-energy ions
16
low-energy ion
12
ion beam
12
ion implantation
8
microbial breeding
8
low-energy
7
ion
5
novel approach
4
microbial
4
approach microbial
4

Similar Publications

Low-energy light ion beams are an essential resource in lithography for nanopatterning magnetic materials and interfaces due to their ability to modify the structure and properties of metamaterials. Here we create ferromagnetic/non-ferromagnetic heterostructures with a controlled layer thickness and nanometer-scale precision. For this, hydrogen ion (H) irradiation is used to reduce the antiferromagnetic nickel oxide (NiO) layer into ferromagnetic Ni with lower fluence than in the case of helium ion (He) irradiation.

View Article and Find Full Text PDF

Imaging plates (IPs) are valuable tools for measuring the intensity of ionizing radiation such as x-rays, electrons, and ions. In this work, we measured the sensitivity of IPs to carbon ions in the unexplored energy region of 0.7-10 keV.

View Article and Find Full Text PDF

PDA/PMMA blend membrane utilized for the selective adsorption and separation of heavy metal ions.

Chemistry

December 2024

Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA.

The detrimental effects of heavy metal aqueous pollution are attracting people's attention increasingly. Membrane separation technology plays a pivotal role in the treatment of aqueous pollution due to its low energy consumption and excellent separation effect. Inspired by the strong adhesion of heavy metal ions by the dopamine in mussel protein, we have fabricated the 5%, 10%, 20% and 30% proportion of polydopamine (PDA)/Polymethyl methacrylate (PMMA) blend membranes with dopamine structure by solvent-induced phase conversion.

View Article and Find Full Text PDF

The frustrated honeycomb spin model can stabilize a subextensively degenerate spiral spin liquid with nontrivial topological excitations and defects, but its material realization remains rare. Here, we report the experimental realization of this model in the structurally disorder-free compound GdZnPO. Using a single-crystal sample, we find that spin-7/2 rare-earth Gd^{3+} ions form a honeycomb lattice with dominant second-nearest-neighbor antiferromagnetic and first-nearest-neighbor ferromagnetic couplings, along with easy-plane single-site anisotropy.

View Article and Find Full Text PDF

Oligotrophs are predominant in nutrient-poor environments, but copiotrophic bacteria may tolerate conditions of low energy and can also survive and thrive in these nutrient-limited conditions. In the present study, we isolated 648 strains using a dilution plating method after enrichment for low-nutrient conditions. We collected 150 seawater samples at 21 stations in different parts of the water column at the Zhenbei Seamount in the South China Sea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!