Very-long-chain fatty acids (VLCFAs) have long been known to be degraded exclusively in peroxisomes via beta-oxidation. A defect in peroxisomal beta-oxidation results in elevated levels of VLCFAs and is associated with the most frequent inherited disorder of the central nervous system white matter, X-linked adrenoleukodystrophy. Recently, we demonstrated that VLCFAs can also undergo omega-oxidation, which may provide an alternative route for the breakdown of VLCFAs. The omega-oxidation of VLCFA is initiated by CYP4F2 and CYP4F3B, which produce omega-hydroxy-VLCFAs. In this article, we characterized the enzymes involved in the formation of very-long-chain dicarboxylic acids from omega-hydroxy-VLCFAs. We demonstrate that very-long-chain dicarboxylic acids are produced via two independent pathways. The first is mediated by an as yet unidentified, microsomal NAD(+)-dependent alcohol dehydrogenase and fatty aldehyde dehydrogenase, which is encoded by the ALDH3A2 gene and is deficient in patients with Sjögren-Larsson syndrome. The second pathway involves the NADPH-dependent hydroxylation of omega-hydroxy-VLCFAs by CYP4F2, CYP4F3B, or CYP4F3A. Enzyme kinetic studies show that oxidation of omega-hydroxy-VLCFAs occurs predominantly via the NAD(+)-dependent route. Overall, our data demonstrate that in humans all enzymes are present for the complete conversion of VLCFAs to their corresponding very-long-chain dicarboxylic acids.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.07-099150DOI Listing

Publication Analysis

Top Keywords

very-long-chain dicarboxylic
12
dicarboxylic acids
12
fatty acids
8
cyp4f2 cyp4f3b
8
acids
5
vlcfas
5
characterization human
4
human omega-oxidation
4
omega-oxidation pathway
4
pathway omega-hydroxy-very-long-chain
4

Similar Publications

Bempedoic acid is a new drug that improves the control of cholesterol levels, either as monotherapy or in combination with existing lipid-lowering therapies, and shows clinical efficacy in cardiovascular disease patients. Thus, patients with comorbidities and under multiple therapies may be eligible for bempedoic acid, thus facing the potential problem of drug-drug interactions (DDIs). Bempedoic acid is a prodrug administered orally at a fixed daily dose of 180 mg.

View Article and Find Full Text PDF

Very long-chain fatty acids (VLCFAs) are precursors for the synthesis of membrane lipids, cuticular waxes, suberins, and storage oils in plants. 3-Ketoacyl CoA synthase (KCS) catalyzes the condensation of C2 units from malonyl-CoA to acyl-CoA, the first rate-limiting step in VLCFA synthesis. In this study, we revealed that Arabidopsis KCS17 catalyzes the elongation of C22-C24 VLCFAs required for synthesizing seed coat suberin.

View Article and Find Full Text PDF

Dicarboxylic acylcarnitine biomarkers in peroxisome biogenesis disorders.

Mol Genet Metab

November 2023

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America. Electronic address:

The peroxisome is an essential eukaryotic organelle with diverse metabolic functions. Inherited peroxisomal disorders are associated with a wide spectrum of clinical outcomes and are broadly divided into two classes, those impacting peroxisome biogenesis (PBD) and those impacting specific peroxisomal factors. Prior studies have indicated a role for acylcarnitine testing in the diagnosis of some peroxisomal diseases through the detection of long chain dicarboxylic acylcarnitine abnormalities (C16-DC and C18-DC).

View Article and Find Full Text PDF

Background: There is an unmet medical need for biomarkers that capture host and environmental contributions in inflammatory bowel diseases (IBDs). This study aimed at testing the potential of circulating lipids as disease classifiers given their major roles in inflammation.

Methods: We applied a previously validated comprehensive high-resolution liquid chromatography-mass spectrometry-based untargeted lipidomic workflow covering 25 lipid subclasses to serum samples from 100 Crohn's disease (CD) patients and 100 matched control subjects.

View Article and Find Full Text PDF

Background: Sarcopenia is one of the most predominant musculoskeletal diseases of the elderly, defined as age-related progressive and generalized loss of muscle mass with a simultaneous reduction in muscle strength and/or function. Using metabolomics, we aimed to examine the association between sarcopenia and the plasma metabolic profile of sarcopenic patients, measured using a targeted HPLC-MS/MS platform.

Methods: Plasma samples from 22 (17 men) hip fracture patients undergoing surgery (8 sarcopenic, age 81.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!