Context: Control of aromatase expression in uterine leiomyoma has significant clinical implications because aromatase inhibitors reduce tumor growth and associated irregular uterine bleeding. The mechanisms that regulate aromatase expression in leiomyoma are unknown.

Objectives: We previously demonstrated that the cAMP-responsive proximal promoters I.3 and II regulate aromatase expression in vivo in uterine leiomyoma tissue. Here, we investigated the cellular and molecular mechanisms responsible for promoter I.3/II usage.

Results: In smooth muscle cells isolated from leiomyoma (LSMCs), dibutyryl cAMP significantly induced aromatase mRNA and enzyme activity. Reporter constructs of promoter I.3/II deletion and site-directed mutants with selective disruption of cis-regulatory elements in the -517/-16 bp region revealed that five out of seven elements, including three CCAAT/enhancer binding protein (C/EBP) binding sites and two cAMP response elements, were essential for cAMP-induced promoter activity. EMSAs demonstrated that nuclear extracts from LSMCs contain complexes assembled on four of the five cis-elements, with C/EBP binding sites, including a novel -245/-231 bp sequence, clearly associating with C/EBPbeta. Chromatin immunoprecipitation assays revealed that C/EBPbeta binds specifically to the promoter I.3/II region in intact cells. Dibutyryl cAMP significantly induced nuclear C/EBPbeta protein levels in LSMCs in a time-dependent manner. Conversely, knockdown of C/EBPbeta dramatically suppressed cAMP-induced aromatase mRNA and enzyme activity.

Conclusions: C/EBPbeta, which binds to multiple cis-regulatory elements in promoter I.3/II, is a key factor in the transcriptional complex controlling aromatase expression in uterine leiomyoma cells. Definition of this mechanism further may assist in designing inhibitors of aromatase specific for leiomyoma tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266947PMC
http://dx.doi.org/10.1210/jc.2007-2507DOI Listing

Publication Analysis

Top Keywords

aromatase expression
20
uterine leiomyoma
16
promoter i3/ii
16
aromatase
9
ccaat/enhancer binding
8
binding protein
8
expression uterine
8
regulate aromatase
8
leiomyoma tissue
8
dibutyryl camp
8

Similar Publications

Yeast sex-hormone whole-cell biosensors are analytical tools characterized by long-time storage and low production cost. We engineered compact β-estradiol biosensors in S. cerevisiae cells by leveraging short (20-nt long) operators bound by the fusion protein LexA-ER-VP64-where ER is the human estrogen receptor and VP64 a strong viral activation domain.

View Article and Find Full Text PDF

Endocrine-targeting therapies shift the breast microbiome to reduce estrogen receptor-α breast cancer risk.

Cell Rep Med

December 2024

Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA. Electronic address:

Article Synopsis
  • Research shows that breast tissue has a unique, changeable microbiome that can be influenced by endocrine-targeting therapies such as tamoxifen.
  • Tamoxifen treatment was found to change the diversity of the breast microbiome and increase levels of certain beneficial bacteria, like Lactobacillus, in both mice and primates.
  • Probiotic bacteria injections in lab mice not only reduced tumor formation but also affected gene expression related to metabolism, suggesting a link between breast microbiome changes and lower risk of estrogen receptor-positive breast cancer.
View Article and Find Full Text PDF

Objectives: Triple negative breast cancer (TNBC) is a distinct subtype of breast cancer that has a poor prognosis due to the lack of effective therapeutic agents. Since a significant proportion of human surgical samples of TNBC expressed mRNA for the growth hormone (GH), growth hormone-releasing hormone (GHRH), and gonadotropin-releasing hormone (GnRH) receptors, and the mitogenic proliferative activity of GH, GHRH, and GnRH, have been identified as effective therapeutic targets for somatostatin and its analogs and GnRH analogs, Di Bella Method (DBM), a combination of hormonal analogs and vitamins, was introduced to target and inhibit solid tumors. The present study aimed to improve the prognosis of TNBC using DBM in women with TNBC.

View Article and Find Full Text PDF

Effects of minipuberty disruption on the expression of sexual behavior in female mice.

Sci Rep

December 2024

Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France.

Sex steroids influence early organization of neural structures involved in expression of sexual behavior. A critical perinatal period during which testosterone surges occur has been identified in male rodents. Data are lacking for females, whose ovarian activity starts later in the postnatal period.

View Article and Find Full Text PDF

It has been reported that enrofloxacin (ENR) disrupts metabolic pathway of steroid in female crucian carp, promoting testosterone (T) synthesis through stimulating expression of luteinizing hormone (LH) and inhibiting conversion of T to estradiol (E) through repressing aromatase A expression. To further learn effect of ENR on steroid metabolism in fish, this work investigated effect of ENR on central E synthesis and the involved mechanisms in female crucian carp through evaluating contents of T and E in blood and brain, expression of secretogranin 2a (scg2a), gonadotrophin 2 β (gth 2β, namely LH) and aromatase B (cyp19a1b) genes in brain, and activation of PI3K/Akt pathway in brain of ENR exposed female crucian carp. Results revealed that ENR promoted steroid metabolism in brain of female crucian carp, stimulated synthesis of T synthesis but inhibited conversion of T to E through promoting expression of scg2a and gth 2β but repressing expression of cyp19a1b, PI3K/Akt signaling pathway participated in regulating the biological process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!