Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization.

J Biol Chem

Departament de Biologia Cellular i Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain.

Published: April 2008

We previously showed that K-Ras is a calmodulin-binding protein. Involvement of this interaction in anterograde and retrograde transport of K-Ras was then suggested. To test this we have analyzed here the domains of K-Ras essential for the interaction with calmodulin. At least three different regions in the K-Ras molecule were important; they are the hypervariable region, the alpha-helix between amino acids 151 and 166, and the Switch II. Within the hypervariable region, both the hydrophobic farnesyl group and the positive-charged amino acids were essential for the interaction between K-Ras and calmodulin in cellular extracts. Consistently, K-Ras S181D, which mimics phosphorylation of Ser-181 of K-Ras, also completely abolished binding to calmodulin. K-Ras mutants correctly farnesylated that did not bind calmodulin were all located at plasma membrane, showing that calmodulin interaction was not required for the transport of K-Ras to plasma membrane. In NIH3T3 cells, K-Ras and calmodulin colocalized mainly in the plasma membrane even after the addition of Ca(2+) ionophore, indicating that interaction did not directly lead to K-Ras internalization. Furthermore, using a K-Ras with impaired binding to calmodulin but with membrane localization, we could demonstrate in striatal neurones that interaction between K-Ras and calmodulin was not required for Golgi K-Ras translocation induced by Ca(2+) influx.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M706238200DOI Listing

Publication Analysis

Top Keywords

k-ras
15
k-ras calmodulin
12
plasma membrane
12
transport k-ras
8
essential interaction
8
calmodulin
8
hypervariable region
8
amino acids
8
interaction k-ras
8
binding calmodulin
8

Similar Publications

Glioblastoma (GBM) characterized byits rapid progression and challenging prognosis, often featuring mutations in the Kirsten rat sarcoma virus (KRAS) gene, which is crucial for numerous cellular signaling mechanisms. Emerging research underscores a significant interaction between KRAS and microRNAs (miRNAs) in these cancers, with miRNAs playing key roles as both regulators and mediators within the KRAS signaling framework. The concept of oncogene-induced senescence (OIS) is explored as a protective mechanism against tumor development, examining how K-RAS signaling is meticulously adjusted to bypass senescence, thereby enhancing cell growth and survival.

View Article and Find Full Text PDF

Background: Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has become essential for diagnosing pancreatic ductal adenocarcinoma (PDAC) and is increasingly utilized for comprehensive genome profiling (CGP) to advance precision medicine. This systematic review and meta-analysis assess the feasibility and clinical utility of EUS-TA samples for CGP in PDAC.

Methods: We conducted a thorough systematic literature search in PubMed, EMBASE, and the Cochrane Library up to October 2023.

View Article and Find Full Text PDF

SIGLEC9 (sialic acid-binding Ig-like lectin 9) is a molecule thought to have a significant influence on the immune properties of the colorectal cancer (CRC) tumor microenvironment (TME). In our study, we assessed the expression of the SIGLEC9 protein in CRC tissue and the surgical margin tissue. Using RT-PCR, we analyzed mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes.

View Article and Find Full Text PDF

Cancer, a leading cause of death worldwide, is projected to increase by 76.6% in new cases and 89.7% in mortality by 2050 (WHO 2022).

View Article and Find Full Text PDF

Exploiting F NMR in a Multiplexed Assay for Small GTPase Activity.

J Am Chem Soc

January 2025

Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.

Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!