Homalopsid snakes are widely distributed throughout Southeast Asia and form the ecologically dominant component of the herpetofauna over much of their range. Although they are considered well differentiated from other colubrid lineages, several aspects of their radiation including within-family relationships, temporal patterns of species diversification, and biogeographic history remain under studied. We analyzed sequence data from four genes (three mitochondrial and one nuclear) for 22 species of the Homalopsidae to generate the most comprehensive phylogeny of the family to date. We also estimated divergence times within the family using a model of independent but log-normally distributed rates of evolution in conjunction with two external fossil calibrations. Using this chronogram, we inferred historical patterns of species diversification within the family. Finally, we used previously published sequence data for 172 snake species to test for the monophyly of the Homalopsidae. Phylogenetic analysis reveals strong support for homalopsid monophyly with an estimate age of the crown group of approximately 22 MYA. The family comprises three major clades which all originated 18-20 MY. Lineage through time plots reveal that homalopsids experienced a significantly higher rate of effective cladogenesis in their early history, consistent with a hypothesis of adaptive radiation. We discuss several Miocene and Pliocene paleogeographic factors that might underlie observed patterns of temporal diversification and biogeography.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2007.10.024DOI Listing

Publication Analysis

Top Keywords

mitochondrial nuclear
8
patterns species
8
species diversification
8
sequence data
8
phylogeny evolutionary
4
evolutionary history
4
history biogeography
4
biogeography oriental-australian
4
oriental-australian rear-fanged
4
rear-fanged water
4

Similar Publications

Quantifying DNA Lesions and Circulating Free DNA: Diagnostic Marker for Electropathology and Clinical Stage of AF.

JACC Clin Electrophysiol

December 2024

Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:

Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.

Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.

View Article and Find Full Text PDF

: Periodontitis is an inflammatory disease induced by bacteria in dental plaque that can activate the host's immune-inflammatory response and invade the bloodstream. We hypothesized that a higher periodontal inflamed surface area (PISA) is associated with higher levels of inflammatory biomarkers, lower levels of antioxidants, and mitochondrial DNA copy number (mtDNAcn). : Using periodontal parameters, we calculated the PISA score, measured the levels of inflammatory biomarkers and antioxidants in the serum, and took buccal swabs for mtDNA and nuclear DNA (nDNA) extraction.

View Article and Find Full Text PDF

Arthrogryposis, which represents a group of congenital disorders, includes various forms. One such form is amyoplasia, which most commonly presents in a sporadic form in addition to distal forms, among which hereditary cases may occur. This condition is characterized by limited joint mobility and muscle weakness, leading to limb deformities and various clinical manifestations.

View Article and Find Full Text PDF

Di-(2-ethylhexyl) phthalate (DEHP) and Cadmium (Cd) affect female reproduction. To date, toxicological research has focused on the effects of individual contaminants, whereas living beings are exposed to mixtures. This study analyzed the effects of a DEHP/Cd mixture on nuclear and cytoplasmic maturation of sheep cumulus-oocyte complexes (COCs) compared with single compounds.

View Article and Find Full Text PDF

Evolutionary dynamics of mitochondrial genomes and intracellular transfers among diploid and allopolyploid cotton species.

BMC Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.

Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!