Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence.

BMC Microbiol

National Centre in HIV Epidemiology and Clinical Research, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.

Published: January 2008

Background: The chlamydial developmental cycle involves the alternation between the metabolically inert elementary body (EB) and the replicating reticulate body (RB). The triggers that mediate the interchange between these particle types are unknown and yet this is crucial for understanding basic Chlamydia biology.

Presentation Of The Hypothesis: We have proposed a hypothesis to explain key chlamydial developmental events whereby RBs are replicating strictly whilst in contact with the host cell membrane-derived inclusion via type three secretion (T3S) injectisomes. As the inclusion expands, the contact between each RB and the inclusion membrane decreases, eventually reaching a threshold, beyond which T3S is inactivated upon detachment and this is the signal for RB-to-EB differentiation.

Testing The Hypothesis: We explore this hypothesis through the development of a detailed mathematical model. The model uses knowledge and data of the biological system wherever available and simulates the chlamydial developmental cycle under the assumptions of the hypothesis in order to predict various outcomes and implications under a number of scenarios.

Implications Of The Hypothesis: We show that the concept of in vitro persistent infection is not only consistent with the hypothesis but in fact an implication of it. We show that increasing the RB radius, and/or the maximum length of T3S needles mediating contact between RBs and the inclusion membrane, and/or the number of inclusions per infected cell, will contribute to the development of persistent infection. The RB radius is the most important determinant of whether persistent infection would ensue, and subsequently, the magnitude of the EB yield. We determine relationships between the length of the T3S needle and the RB radius within an inclusion, and between the RB radius and the number of inclusions per host cell to predict whether persistent infection or normal development would occur within a host cell. These results are all testable experimentally and could lead to significantly greater understanding of one of the most crucial steps in chlamydial development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254404PMC
http://dx.doi.org/10.1186/1471-2180-8-5DOI Listing

Publication Analysis

Top Keywords

host cell
16
persistent infection
16
chlamydial developmental
12
developmental cycle
8
inclusion membrane
8
length t3s
8
number inclusions
8
hypothesis
7
inclusion
6
chlamydial
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!