We developed and applied an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance, chloroplast CO2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately for sunlit and shaded leaves within multiple canopy layers. The ecosystem photosynthesis model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis from eddy covariance measurements made in a coastal Douglas-fir forest on Vancouver Island. A good agreement was also observed between modelled and measured delta13C values of ecosystem-respired CO2 (deltaR). The modelled deltaR values showed strong responses to variation in photosynthetic photon flux density (PPFD), air temperature, vapour pressure deficit (VPD) and available soil moisture in a manner consistent with leaf-level studies of photosynthetic 13C discrimination. Sensitivity tests were conducted to evaluate the effect of (1) changes in the lag between the time of CO2 fixation and the conversion of organic matter back to CO2; (2) shifts in the proportion of autotrophic and heterotrophic respiration; (3) isotope fractionation during respiration; and (4) environmentally induced changes in mesophyll conductance, on modelled delta(R) values. Our results indicated that deltaR is a good proxy for canopy-level C(c)/C(a) and 13C discrimination during photosynthetic gas exchange, and therefore has several applications in ecosystem physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3040.2008.01773.x | DOI Listing |
Planta
January 2025
Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil.
Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.
Sweet corn is highly susceptible to water deprivation, making it crucial to identify effective strategies for enhancing its tolerance to water deficit conditions. This study investigates the novel application of Spermine as a bio-stimulant to improve sweet corn (Zea mays L. var.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
UR EABX, Inrae, Cestas, France. Electronic address:
Atrazine and S-metolachlor are herbicides widely used on corn and soybean crops where they are sometimes found in concentrations of concern in nearby aquatic ecosystems, potentially affecting autotrophic organisms. The aim of this study was to investigate the response of the green algae Enallax costatus, the diatom Gomphonema parvulum and a culture of the cyanobacteria Phormidium sp. and Microcystis aeruginosa, to atrazine and S-metolachlor alone and in mixture (0, 10, 100 and 1000 µg.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!