Tyrosine hydroxylase (TH) catalyzes the first step in the biosynthesis of catecholamines. Regulation of TH enzyme activity is controlled through the posttranslational modification of its regulatory domain. The regulatory domain of TH can be phosphorylated at four serines (8, 19, 31, and 40) by a variety of protein kinases. Phosphorylation of Ser19 does not by itself increase TH activity but induces its binding to the 14-3-3 protein. That leads to the enhancement of TH activity with a still not fully understood mechanism. The main goal of this work was to investigate whether the 14-3-3 protein binding affects the conformation of the regulatory domain of human TH isoform 1 (TH1R). Site-directed mutagenesis was used to generate five single-tryptophan mutants of TH1R with the Trp residue located at five different positions within the domain (positions 14, 34, 73, 103, and 131). Time-resolved tryptophan fluorescence measurements revealed that phosphorylation of Ser19 and Ser40 does not itself induce any significant structural changes in regions surrounding inserted tryptophans. On the other hand, the interaction between the 14-3-3 protein and phosphorylated TH1R decreases the solvent exposure of tryptophan residues at positions 14 and 34 and induces distinct structural change in the vicinity of Trp73. The 14-3-3 protein binding also reduces the sensitivity of phosphorylated TH1R to proteolysis by protecting its N-terminal part (first 33 residues). Circular dichroism measurements showed that TH1R is an unstructured protein with a low content of secondary structure and that neither phosphorylation nor the 14-3-3 protein binding changes its secondary structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi7019468 | DOI Listing |
J Proteome Res
January 2025
PPGEMN, School of Engineering, Mackenzie Presbyterian University & MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São Paulo 01302-907, Brazil.
Since late 2021, Omicron variants have dominated the epidemiological scenario as the most successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineages, driving new and breakthrough infections globally over the past two years. In this study, we investigated for the first time the host salivary response of COVID-19 patients infected with Omicron variants (BA.1, BA.
View Article and Find Full Text PDFJ Oral Microbiol
December 2024
School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
Background And Purpose: F. nucleatum, a gram-negative oral bacteria, is abundant in laryngeal cancer (LC). While specific 14-3-3 proteins act as LC oncogenes, the link between F.
View Article and Find Full Text PDFFEBS Lett
January 2025
Department of Biomedical Sciences, Creighton University, Omaha, NE, USA.
Protein-protein interactions involving 14-3-3 proteins regulate various cellular activities in normal and pathological conditions. These interactions have mostly been reported to be phosphorylation-dependent, but the 14-3-3 proteins also interact with unphosphorylated proteins. In this work, we investigated whether phosphorylation is required, or, alternatively, whether negative charges are sufficient for 14-3-3ε binding.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms.
View Article and Find Full Text PDFPharmacol Res
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China. Electronic address:
The subcellular localization of Yes-associated protein (YAP) is dynamically regulated by post-transcriptional modifications, critically influencing cardiac function. Despite its significance, the precise mechanism controlling YAP nuclear sequestration and its role in cardiac hypertrophy remain poorly defined. In this study, utilizing immunoprecipitation-mass spectrometry, we identified potential acetylation sites and interacting proteins of YAP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!