Electronic structures at the silicon/molecule interface were studied by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, inverse photoemission spectroscopy, and Kelvin probe techniques. The heterojunctions were fabricated by direct covalent grafting of a series of molecules (-C6H4-X, with X = NMe2, NH2, NO2, and Mo6 oxide cluster) onto the surface of four types of silicon substrates (both n- and p-type with different dopant densities). The electronic structures at the interfaces were thus systematically tuned in accordance with the electron-donating ability, redox capability, and/or dipole moment of the grafted molecules. The work function of each grafted surface is determined by a combination of the surface band bending and electron affinity. The surface band bending is dependent on the charge transfer between the silicon substrate and the grafted molecules, whereas electron affinity is dependent on the dipole moment of the grafted molecules. The contribution of each to the work function can be separated by a combination of the aforementioned analytical techniques. In addition, because of the relatively low molecular coverage on the surface, the contribution from the unreacted H-terminated surface to the work function was considered. The charge-transfer barrier of silicon substrates attached to different molecules exhibits a trend analogous to surface band bending effects, whereas the surface potential step exhibits properties analogous to electron affinity effects. These results provide a foundation for the utilization of organic molecule surface grafting as a means to tune the electronic properties of semiconductors and, consequently, to achieve controllable modulation of electronic characteristics in small semiconductor devices at future technology nodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0768789 | DOI Listing |
Cancers (Basel)
December 2024
Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.
Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinic of Endocrinology, Diabetes and Diseases of National Center for Infertility and Endocrinology of Gender, 11000 Belgrade, Serbia.
Dual-double stem cell therapy, which integrates mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), represents a cutting-edge approach in regenerative medicine, particularly for conditions such as ovarian decline, premature ovarian insufficiency (POI), and induced ovarian failure. This therapy leverages the unique properties of MSCs and HSCs, enhancing tissue repair, immune modulation, and overall regenerative outcomes. MSCs, known for their ability to differentiate into various cell types, provide a supportive microenvironment and secrete bioactive molecules that promote angiogenesis and reduce inflammation.
View Article and Find Full Text PDFMolecules
January 2025
Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
The efficient removal of dyes is of significant importance for environmental purification and human health. In this study, a novel material (Si-MPTS-IL) has been synthesized by the immobilization of imidazole ionic liquids (ILs) onto nano-silica using the radiation grafting technique. The adsorption performance of Si-MPTS-IL for Coomassie Brilliant Blue (CBB) removal is studied by a series of static adsorption experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!