A reversed-phase column liquid chromatographic assay is described and validated for lamotrigine, a new anticonvulsant drug. The drug and its internal standard were extracted from plasma into acetonitrile according to a previously described solvent-demixing procedure, separated on LiChrospher 100CN, and measured by ultraviolet absorption at 280 nm. The assay performance was evaluated through analysis of variance and of regression with our usual validation design. The method detects ca. 2 ng (55 micrograms/l x 30 microliters) and shows a linear response with a constant 5% coefficient of variation from 1 to 10 mg/l. It is easy and robust, and seems well suited to therapeutic drug monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-4347(91)80491-tDOI Listing

Publication Analysis

Top Keywords

liquid chromatographic
8
chromatographic assay
8
performance analysis
4
analysis reversed-phase
4
reversed-phase liquid
4
assay lamotrigine
4
lamotrigine plasma
4
plasma solvent-demixing
4
solvent-demixing extraction
4
extraction reversed-phase
4

Similar Publications

An increasing number of cannabis-related products have become available and entered the market, particularly those containing cannabidiol (CBD) and Δ-tetrahydrocannabinol (Δ-THC). Analytical methods for cannabinoids in urine have been described extensively in the literature. However, methods providing good resolution for distinguishing interferences from THC positional isomers are needed.

View Article and Find Full Text PDF

Various technical methodologies are required to accurately detect substances of different chemical and pharmacological properties in biological samples, which are increasing in number and variety daily. Therefore, laboratories where many samples and different factors are analyzed simultaneously need methods with easy sample preparation, short analysis times and low analysis costs. In this study, the objective was to scan substances susceptible to chemical degradation, amenable to analysis without hydrolysis, and exhibiting short-term stability by employing a straightforward, expeditious, and cost-efficient method.

View Article and Find Full Text PDF

Selective sensing of terbinafine hydrochloride using carbon-based electrodes: a green and sustainable electroanalytical method for pharmaceutical products.

Anal Methods

January 2025

ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.

Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.

View Article and Find Full Text PDF

The objective of this study is to develop an HPLC-UV method for the cost-effective and quantitative determination of vitamin D3 in food, even in the presence of vitamin D2, with a specific focus on egg yolk. During method development, the performance of three stationary phases in resolving the peak of vitamin D2 from that of vitamin D3 was investigated. The physicochemical properties of these phases differed particularly in the extent of hydrophobicity and silanophilic activity, including a GraceSmart RP C18 column without silanol endcapping, a Robusta RP C18 column with silanol endcapping, and a Waters Xbridge RP C18 column with ethylene-bridged hybrid (BEH) particle technology.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a widely used class of synthetic chemicals that pose a significant global environmental and health threat due to their persistent and bioaccumulation toxicity caused by strong C-F bonds in their structures. PFAS usually exist in trace concentrations in environmental water bodies, which poses great challenges for environmental analysis. In this study, environmentally friendly cellulose was modified with polyaniline through in situ oxidative polymerization, and used as the filter paper for solid-phase extracting 23 PFAS in water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!