The RNA-binding protein HuR affects cell fate by regulating the stability and/or the translation of messenger RNAs that encode cell stress response proteins. In this study, we delineate a novel regulatory mechanism by which HuR contributes to stress-induced cell death. Upon lethal stress, HuR translocates into the cytoplasm by a mechanism involving its association with the apoptosome activator pp32/PHAP-I. Depleting the expression of pp32/PHAP-I by RNA interference reduces both HuR cytoplasmic accumulation and the efficiency of caspase activation. In the cytoplasm, HuR undergoes caspase-mediated cleavage at aspartate 226. This cleavage activity is significantly reduced in the absence of pp32/PHAP-I. Substituting aspartate 226 with an alanine creates a noncleavable isoform of HuR that, when overexpressed, maintains its association with pp32/PHAP-I and delays the apoptotic response. Thus, we propose a model in which HuR association with pp32/PHAP-I and its caspase-mediated cleavage constitutes a regulatory step that contributes to an amplified apoptotic response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213623PMC
http://dx.doi.org/10.1083/jcb.200709030DOI Listing

Publication Analysis

Top Keywords

caspase-mediated cleavage
12
hur
8
aspartate 226
8
association pp32/phap-i
8
apoptotic response
8
pp32/phap-i
6
cleavage hur
4
hur cytoplasm
4
cytoplasm contributes
4
contributes pp32/phap-i
4

Similar Publications

Pannexin 1 (Panx1) constitutes a large pore channel responsible for the release of adenosine triphosphate (ATP) from apoptotic cells. Strong evidence indicates that caspase-mediated cleavage of the C-terminus promotes the opening of the Panx1 channel by unplugging the pore. However, this simple pore-plugging mechanism alone cannot account for the observation that a Panx1 construct ending before the caspase cleavage site remains closed.

View Article and Find Full Text PDF

A LANA peptide inhibits tumor growth by inducing CHD4 protein cleavage and triggers cell death.

Cell Chem Biol

November 2024

Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA. Electronic address:

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection, and viral genes are poised to be transcribed in the latent chromatin. In the poised chromatins, KSHV latency-associated nuclear antigen (LANA) interacts with cellular chromodomain-helicase-DNA-binding protein 4 (CHD4) and inhibits viral promoter activation. CHD4 is known to regulate cell differentiation by preventing enhancers from activating promoters.

View Article and Find Full Text PDF

Pyroptosis in health and disease: mechanisms, regulation and clinical perspective.

Signal Transduct Target Ther

September 2024

The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.

Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role.

View Article and Find Full Text PDF

Enhancing antitumor efficacy of CLDN18.2-directed antibody-drug conjugates through autophagy inhibition in gastric cancer.

Cell Death Discov

September 2024

Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.

Claudin18.2 (CLDN18.2) is overexpressed in cancers of the digestive system, rendering it an ideal drug target for antibody-drug conjugates (ADCs).

View Article and Find Full Text PDF

Identification of a novel caspase cleavage motif AEAD.

Virol Sin

October 2024

State Key Laboratory of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Provincial Key Laboratory of Jiangxia, Wuhan, 430207, China. Electronic address:

Infections of many viruses induce caspase activation to regulate multiple cellular pathways, including programmed cell death, immune signaling and etc. Characterizations of caspase cleavage sites and substrates are important for understanding the regulation mechanisms of caspase activation. Here, we identified and analyzed a novel caspase cleavage motif AEAD, and confirmed its caspase dependent cleavage activity in natural substrate, such as nitric oxide-associated protein 1 (NOA1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!