A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statistics over features for internal carotid arterial disorders detection. | LitMetric

Statistics over features for internal carotid arterial disorders detection.

Comput Biol Med

Department of Electrical and Electronics Engineering, Faculty of Engineering, TOBB Ekonomi ve Teknoloji Universitesi, Söğütözü, Ankara, Turkey.

Published: March 2008

The objective of the present study is to extract the representative features of the internal carotid arterial (ICA) Doppler ultrasound signals and to present the accurate classification model. This paper presented the usage of statistics over the set of the extracted features (Lyapunov exponents and the power levels of the power spectral density estimates obtained by the eigenvector methods) in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Mixture of experts (ME) and modified mixture of experts (MME) architectures were formulated and used as basis for detection of arterial disorders. Three types of ICA Doppler signals (Doppler signals recorded from healthy subjects, subjects having stenosis, and subjects having occlusion) were classified. The classification results confirmed that the proposed ME and MME has potential in detecting the arterial disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2007.12.002DOI Listing

Publication Analysis

Top Keywords

arterial disorders
12
features internal
8
internal carotid
8
carotid arterial
8
ica doppler
8
mixture experts
8
doppler signals
8
statistics features
4
arterial
4
disorders detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!