Plants respond to pathogens by regulating a network of signaling pathways that fine-tune transcriptional activation of defense-related genes. The aim of this study was to determine the role of Capsicum annuum WRKY zinc finger-domain transcription factor 1 (CaWRKY1) in defense. In previous studies, CaWRKY1 was found to be rapidly induced in C. annuum (chili pepper) leaves by incompatible and compatible pathogen inoculations, but the complexity of the network of the WRKY family prevented the function of CaWRKY1 in defense from being elucidated. Virus-induced gene silencing of CaWRKY1 in chili pepper leaves resulted in decreased growth of Xanthomonas axonopodis pv. vesicatoria race 1. CaWRKY1-overexpressing transgenic plants showed accelerated hypersensitive cell death in response to infection with tobacco mosaic virus and Pseudomonas syringe pv. tabaci. Lower levels of pathogenesis-related gene induction were observed in CaWRKY1-overexpressing transgenic plants following salicylic acid (SA) treatments. This work suggests that the newly characterized CaWRKY1, which is strongly induced by pathogen infections and the signal molecule SA, acts as a regulator to turn off systemic acquired resistance once the pathogen challenge has diminished and to prevent spurious activation of defense responses at suboptimal concentrations of SA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2007.02310.x | DOI Listing |
Sci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran.
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
Paris yunnanensis, also named as Rhizoma Paridis in the Chinese Pharmacopeia, is a perennial Chinese medicinal herb commonly grown in Southwest China. However, several viruses have been found infecting this plant in recent years. Using high-throughput sequencing (HTS) and Sanger sequencing, this study obtained the complete genome sequences of three capillovirus isolates and one potyvirus isolate.
View Article and Find Full Text PDFSci Rep
January 2025
College of Horticulture and Forestry, Tarim University, Alar, 843300, China.
To explore CRT gene family members and their responses to low-temperature stress, bioinformatics methods were used to identify the CRT gene family in pepper. In this study, a total of 4 CRT gene family members were identified by screening. The genes were found to be located on different chromosomes, and phylogenetic tree and collinearity analyses were performed.
View Article and Find Full Text PDFBMC Nutr
December 2024
Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Perianal fistula is one of the complications of deepened anal fissure. The present case-control study aimed to assess the risk factors of fissure-associated fistulas due to the limited available evidence.
Methods: Patients with fissure-associated fistulas were considered as case, and patients with anal fissure who were undergoing medical treatment without any previous anorectal surgeries were considered as control group.
Int J Biol Macromol
December 2024
Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China. Electronic address:
Plants frequently encounter phosphate (Pi) starvation due to its scarce availability in soil, necessitating an adaptive phosphate starvation response (PSR). This study explores this adaptation in pepper (Capsicum annuum L.) under low-Pi stress, focusing on the PHOSPHATE STARVATION RESPONSE (PHR) gene family.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!