Isotopic discrimination as a tool for organic farming certification in sweet pepper.

J Environ Qual

Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca, Murcia, Spain.

Published: March 2008

Organic farming is a form of agriculture that excludes the use of synthetic fertilizers, pesticides, and genetically modified organisms. These fertilizers have been traditionally overused in conventional farming to avoid lost revenue, but this often not does not take into account the potential contamination of aquifers and river due to nitrate leaching. Transition to organic farming practices could provide an instrument to reduce contamination and increase potential income. It is difficult to determine to what extent those fertilizers could have been used within a complete traceability of the production process. In this experiment, we evaluated the use of (15)N/(14)N isotopic discrimination in sweet pepper plants to test the hypothesis that synthetic fertilizers significantly reduce (15)N/(14)N compared with exclusively organic practices. Therefore, three common types of organic manures (sheep, hen, or horse) were applied at a rate of 8 kg m(-2) with or without synthetic fertilizer amendments under fully controlled environmental and irrigation conditions. Results indicate that (i) use of synthetic fertilizers significantly reduced (15/14)N(2)vsN(2)atm compared with treatments that only received water; (ii) with respect to the plant organs, old leaves and fruits were more sensitive to the synthetic fertilizer additions with reductions in (15/14)N(2)vsN(2)atm of 24.1 and 27.8%, respectively; and (iii) independently of the organic manure used, no additional fertilization (synthetic or organic) is required before 106 days after transplanting at that dosage because plant fresh weight was not reduced.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2007.0329DOI Listing

Publication Analysis

Top Keywords

organic farming
12
synthetic fertilizers
12
isotopic discrimination
8
sweet pepper
8
synthetic fertilizer
8
organic
7
synthetic
6
fertilizers
5
discrimination tool
4
tool organic
4

Similar Publications

Unlabelled: Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s.

View Article and Find Full Text PDF

Blended phytogenics as an alternative to growth-promoting antibiotics in newly weaned piglets.

Trop Anim Health Prod

December 2024

Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil.

The research aimed to evaluate the effects of a commercial blend of phytogenic compounds on the digestibility, antioxidant system, intestinal microbiota, and performance of weaned piglets. Two experiments compared three treatments (diets): control, zinc bacitracin (300 g/t) and blended phytogenic compounds (400 g/t). The first experiment analised of digestibility of the dry matter, organic matter, crude protein, crude energy and metabolizable energy, in addition to blood parameters and gut microbiota in 15 piglets commercial cross-bred, weaned at 28 days of age, castrated males, weighing 9.

View Article and Find Full Text PDF

Effects of straw amendment on the bioavailability of selenite in soil and its mechanisms.

Ecotoxicol Environ Saf

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China. Electronic address:

Dissolved organic matter (DOM) released by straw returning for decomposition interacts with selenium (Se) in soil, which affects the speciation distribution of Se and its bioavailability. However, the relative mechanisms involved are slightly understood. This study investigated the effects of straw-derived DOM on two levels of exogenous selenite (low-Se and high-Se treatments) in two types of soil with distinct pH.

View Article and Find Full Text PDF

Treated wastewater reuse and its impact on soil properties and potato and corn growth.

Sci Total Environ

December 2024

Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa K1A 0C6, ON, Canada. Electronic address:

Water scarcity is a growing challenge in semi-arid regions. Many farmers have resorted to treated wastewater (TWW) as an available and low-cost water source. This study investigated the impact of irrigating potato (Solanum Tuberosum) and corn (Zea mays) with tertiary-treated (TW) and secondary-treated (SW) wastewater compared to freshwater, over two years.

View Article and Find Full Text PDF

In this study, we investigated the changes in untargeted metabolites using UHPLC-MS/MS and the flavors of nonflavored (BS1) and flavored (BS2) roasted beef using GC-MS throughout a 6-month frozen period. A total of 509, 659, and 496 metabolites met the conditions for differential screening, and 56, 103, and 47 differential metabolites were recognized between BS1 and BS2 at 0, 3, and 6 months of frozen periods, respectively. The total relative abundance of organic nitrogen compounds, phenylpropanoids, polyketides, organic acids and their derivatives, and benzenoids increased during frozen storage at 3 months and then decreased at 6 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!