Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CmeR functions as a transcriptional repressor modulating the expression of the multidrug efflux pump CmeABC in Campylobacter jejuni. To determine if CmeR also regulates other genes in C. jejuni, we compared the transcriptome of the cmeR mutant with that of the wild-type strain using a DNA microarray. This comparison identified 28 genes that showed a > or = 2-fold change in expression in the cmeR mutant. Independent real-time quantitative reverse transcription-PCR experiments confirmed 27 of the 28 differentially expressed genes. The CmeR-regulated genes encode membrane transporters, proteins involved in C4-dicarboxylate transport and utilization, enzymes for biosynthesis of capsular polysaccharide, and hypothetical proteins with unknown functions. Among the genes whose expression was upregulated in the cmeR mutant, Cj0561c (encoding a putative periplasmic protein) showed the greatest increase in expression. Subsequent experiments demonstrated that this gene is strongly repressed by CmeR. The presence of the known CmeR-binding site, an inverted repeat of TGTAAT, in the promoter region of Cj0561c suggests that CmeR directly inhibits the transcription of Cj0561c. Similar to expression of cmeABC, transcription of Cj0561c is strongly induced by bile compounds, which are normally present in the intestinal tracts of animals. Inactivation of Cj0561c did not affect the susceptibility of C. jejuni to antimicrobial compounds in vitro but reduced the fitness of C. jejuni in chickens. Loss-of-function mutation of cmeR severely reduced the ability of C. jejuni to colonize chickens. Together, these findings indicate that CmeR governs the expression of multiple genes with diverse functions and is required for Campylobacter adaptation in the chicken host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258875 | PMC |
http://dx.doi.org/10.1128/JB.01796-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!