Objectives: Thoracic aneurysms are the main cardiovascular complication of Marfan syndrome (MFS) resulting in premature death. MFS has been associated with mutations of the gene encoding fibrillin-1 (FBN1), a major constituent of the elastic fibers. Matrix metalloproteinases (MMPs) are important in the pathogenesis of abdominal aortic aneurysms but their precise role in MFS is not clear. Doxycycline is a nonspecific MMP inhibitor. The objective of the study was to determine whether docycycline can attenuate matrix degradation and prolong the survival of mice with MFS.

Methods: The study employed a well-characterized animal model of MFS, namely fibrillin-1 under-expressing mice (mgR/mgR mice) that die spontaneously from rupture of the thoracic aorta between 2 to 4 months of age. Mutant and wild type mice were given doxycycline in their drinking water at a concentration designed to provide 100 mg/kg/day beginning at postnatal day (PD) 1, whereas control mice were given water. Treated mice were divided into two groups. One group of animals was followed until death or for 7 months to determine lifespan. In the second group of mice, the ascending thoracic aortas were collected for histological analysis (H&E staining, trichrome staining) and zymography for examining MMP-2 and MMP-9 levels at 6 weeks.

Results: MMP-2 and MMP-9 levels were higher in the thoracic aorta of mgR/mgR mice compared with wild type littermates. Doxycycline-treated mgR/mgR mice lived 132 +/- 14.6 days (n = 16) or significantly longer than untreated mutant mice (79 +/- 6.7 days, n = 30) (P < 0.01). Connective tissue staining showed that doxycycline treatment decreased elastic fiber degradation in mgR/mgR mice. Furthermore, mgR/mgR mice treated with doxycycline had lower MMP-2 and MMP-9 levels compared with untreated mgR/mgR mice.

Conclusions: This study demonstrates that doxycycline significantly delays aneurysm rupture in MFS-like mice by inhibiting expression of tissue MMP-2 and MMP-9 and thus, degradation of the elastic matrix. The results suggest that MMPs contribute to the progression of thoracic aneurysm in MFS and that doxycycline has the potential to significantly alter the course of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148046PMC
http://dx.doi.org/10.1016/j.jvs.2007.09.016DOI Listing

Publication Analysis

Top Keywords

mgr/mgr mice
20
mmp-2 mmp-9
16
mice
13
mmp-9 levels
12
doxycycline delays
8
delays aneurysm
8
aneurysm rupture
8
marfan syndrome
8
mice mgr/mgr
8
thoracic aorta
8

Similar Publications

Thoracic aortic aneurysm (TAA) is associated with Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1. Sexual dimorphism has been recorded for TAA outcomes in MFS, but detailed studies on the differences in TAA progression in males and females and their relationships to outcomes have not been performed. The aims of this study were to determine sex differences in the diameter dilatation, mechanical properties, and extracellular matrix (ECM) remodeling over time in a severe mouse model ( = MU) of MFS-associated TAA that has a shortened life span.

View Article and Find Full Text PDF

High-Fat Diet Has a Protective Sex-Dependent Effect on Aortic Aneurysm Severity in a Marfan Syndrome Mouse Model.

Can J Cardiol

November 2023

Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Québec, Canada. Electronic address:

Background: Marfan syndrome (MFS) is a genetic disorder caused by mutations in fibrillin-1 and is characterized by thoracic aortic aneurysms and other complications. Previous studies revealed sexual dimorphisms in formation of aortic aneurysm in patients with MFS. The current study aimed to investigate the combined role of a high-fat diet (HFD) and biological sex in aortic disease using the mgR/mgR MFS mouse model.

View Article and Find Full Text PDF

Redox Dysregulation of Vascular Smooth Muscle Sirtuin-1 in Thoracic Aortic Aneurysm in Marfan Syndrome.

Arterioscler Thromb Vasc Biol

August 2023

Vascular Biology Section (E.B., S.S.P.D.L., Y.T., H.L., Y.H., Y.W., P.M.S., X.Y., J.B.G., X.W., J.H., F.S.), Department of Medicine, Boston University Chobenian & Avedisian School of Medicine, MA.

Background: Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases).

Methods: In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1), an established model of Marfan syndrome prone to aortic dissection/rupture.

View Article and Find Full Text PDF

Background: Marfan syndrome, caused by mutations in the gene for fibrillin-1, leads to thoracic aortic aneurysms (TAAs). Phenotypic modulation of vascular smooth muscle cells (SMCs) and ECM (extracellular matrix) remodeling are characteristic of both nonsyndromic and Marfan aneurysms. The ECM protein FN (fibronectin) is elevated in the tunica media of TAAs and amplifies inflammatory signaling in endothelial and SMCs through its main receptor, integrin α5β1.

View Article and Find Full Text PDF

Fibrillin-1 Regulates Arteriole Integrity in the Retina.

Biomolecules

September 2022

Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, University of Bordeaux, INSERM, F-33000 Bordeaux, France.

Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils that provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Fibrillin-1 is a component of the wall of large arteries but has been poorly described in other vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!