Rapid removal of flutriafol in water by zero-valent iron powder.

Chemosphere

American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-8281, Riad El Solh, Beirut, Lebanon.

Published: March 2008

AI Article Synopsis

  • A study investigates the degradation of the pesticide flutriafol using zero-valent iron (ZVI) powder in a lab setting, focusing on how different amounts of ZVI affect the degradation rate at a neutral pH.
  • Results indicate that flutriafol degrades more quickly with greater surface contact with ZVI, showing first-order kinetics and half-lives of 10.8 and 3.6 minutes under aerobic and anaerobic conditions, respectively.
  • Three analytical methods (UV-Vis spectrophotometry, HPLC with various detectors) confirm that flutriafol completely disappears after 20 minutes, with by-products showing loss of fluorescence and changes in chemical structure.

Article Abstract

A study of the effect of zero-valent iron (ZVI) powder is carried out for the first time on the degradation of flutriafol ((RS)-2,4'-difluoro-alpha-(1H-1,2,4-triazol-1-ylmethyl)-benzhydryl alcohol, C(16)H(13)F(2)N(3)O), a bifluorinated soil and water persistent triazole pesticide using a laboratory scale device consisting of a 20 ml pyrex serum vials fixed to a Vortex agitator. Different amounts of ZVI powder (10-50 g l(-1)) at pH 6.6 and room temperature were investigated. Experiments showed an observed degradation rate k(obs) directly proportional to the surface of contact of flutriafol with ZVI. Flutriafol degradation reactions demonstrated first order kinetic with a half-live of about 10.8+/-0.5 min and 3.6+/-0.2 min when experiments were conducted at [ZVI]=10 g l(-1) into oxygenated and anoxic solutions, respectively. Three analytical techniques were employed to monitor flutriafol degradation and to understand solution and by-products behaviors: (1) A UV-Vis spectrophotometer; (2) a high performance liquid chromatography (HPLC) coupled with a photo diode array (PDA) and fluorescence detectors; (3) a similar HPLC coupled with a PDA and a mass spectrometer detectors equipped with an atmospheric pressure photoionization source. Results showed a complete disappearance of flutriafol after 20 min of contact with ZVI, the loss of fluorescence properties of the final by-products, the defluorination of the triazole pesticide via hydroxylation reaction and finally the hydrogenation of the triazole ring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2007.11.057DOI Listing

Publication Analysis

Top Keywords

zero-valent iron
8
zvi powder
8
triazole pesticide
8
flutriafol degradation
8
hplc coupled
8
flutriafol
6
rapid removal
4
removal flutriafol
4
flutriafol water
4
water zero-valent
4

Similar Publications

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Integrated removal of chromium, lead, and cadmium using nano-zero-valent iron-supported biochar: Mechanistic insights and eco-toxicity assessment.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China. Electronic address:

The contamination of water and soil by heavy metals (HMs) is a global issue that should be given much more concern. Modified nano-zero-valent iron (nZVI) composites offer an effective strategy for HMs remediation, but few studies have focused on removing coexisting HMs and the eco-toxicity of the composite. In this study, corn straw biochar-supported nZVI composites (nZVI-BC) were synthesized, characterized and used for the removal of Cr, Pb, and Cd in single and multi-system at different composites dosages, metal concentrations, and solution pH.

View Article and Find Full Text PDF

Nano zero-valent iron with a self-forming Co-catalytic surface for enhanced Fenton-like reactions.

Environ Res

December 2024

School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China. Electronic address:

Fenton reactions, commonly employed in environmental remediation, decompose H₂O₂ using Fe⁺ to generate free radicals. However, the efficiency is often limited by the slow conversion of Fe³⁺ to Fe⁺. In this study, we synthesize zero-valent iron nanoparticles (nZVI) via a green, plant extract-mediated reduction method, resulting in nZVI coated with a reductive polyphenolic layer that enhances Fe³⁺/Fe⁺ cycling.

View Article and Find Full Text PDF

The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).

View Article and Find Full Text PDF

Efficient nitrate removal via microorganism-iron oxide co-evolution on biocathode surface.

Bioelectrochemistry

December 2024

School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China. Electronic address:

Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!