Sensitive genome-wide screen for low secondary enzymatic activities: the YjbQ family shows thiamin phosphate synthase activity.

J Mol Biol

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3, CP 62250, Cuernavaca, Morelos, México.

Published: February 2008

Contemporary enzymes are highly efficient and selective catalysts. However, due to the intrinsically very reactive nature of active sites, gratuitous secondary reactions are practically unavoidable. Consequently, even the smallest cell, with its limited enzymatic repertoire, has the potential to carry out numerous additional, very likely inefficient, secondary reactions. If selectively advantageous, secondary reactions could be the basis for the evolution of new fully functional enzymes. Here, we investigated if Escherichia coli has cryptic enzymatic activities related to thiamin biosynthesis. We selected this pathway because this vitamin is essential, but the cell's requirements are very small. Therefore, enzymes with very low activity could complement the auxotrophy of strains deleted of some bona fide thiamin biosynthetic genes. By overexpressing the E. coli's protein repertoire, we selected yjbQ, a gene that complemented a strain deleted of the thiamin phosphate synthase (TPS)-coding gene thiE. In vitro studies confirmed TPS activity, and by directed evolution experiments, this activity was enhanced. Structurally oriented mutagenesis allowed us to identify the putative active site. Remote orthologs of YjbQ from Thermotoga, Sulfolobus, and Pyrococcus were cloned and also showed thiamin auxotrophy complementation, indicating that the cryptic TPS activity is a property of this protein family. Interestingly, the thiE- and yjbQ-coded TPSs are analog enzymes with no structural similarity, reflecting distinct evolutionary origin. These results support the hypothesis that the enzymatic repertoire of a cell such as E. coli has the potential to perform vast amounts of alternative reactions, which could be exploited to evolve novel or more efficient catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2007.12.017DOI Listing

Publication Analysis

Top Keywords

secondary reactions
12
enzymatic activities
8
thiamin phosphate
8
phosphate synthase
8
enzymatic repertoire
8
tps activity
8
thiamin
5
activity
5
sensitive genome-wide
4
genome-wide screen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!