The common characteristics of amyloid and amyloid-like fibrils from disease- and non-disease-associated proteins offer the prospect that well-defined model systems can be used to systematically dissect the driving forces of amyloid formation. We recently reported the de novo designed cc beta peptide model system that forms a native-like coiled-coil structure at low temperatures and which can be switched to amyloid-like fibrils by increasing the temperature. Here, we report a detailed molecular description of the system in its fibrillar state by characterizing the cc beta-Met variant using several microscopic techniques, circular dichroism spectroscopy, X-ray fiber diffraction, solid-state nuclear magnetic resonance, and molecular dynamics calculations. We show that cc beta-Met forms amyloid-like fibrils of different morphologies on both the macroscopic and atomic levels, which can be controlled by variations of assembly conditions. Interestingly, heterogeneity is also observed along single fibrils. We propose atomic models of the cc beta-Met amyloid-like fibril, which are in good agreement with all experimental data. The models provide a rational explanation why oxidation of methionine residues completely abolishes cc beta-Met amyloid fibril formation, indicating that a small number of site-specific hydrophobic interactions can play a major role in the packing of polypeptide-chain segments within amyloid fibrils. The detailed structural information available for the cc beta model system provides a strong molecular basis for understanding the influence and relative contribution of hydrophobic interactions on native-state stability, kinetics of fibril formation, fibril packing, and polymorphism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2007.11.100 | DOI Listing |
J Immunol Methods
January 2025
Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia.
Background: Rapid vaccine platforms development is crucial for responding to epidemics and pandemics of emerging infectious diseases, such as Ebola. This study explores the potential of peptide vaccines that self-organize into amyloid-like fibrils, aiming to enhance immunogenicity while considering safety and cross-reactivity.
Methods: We synthesized two peptides, G33 and G31, corresponding to a segment of the Ebola virus GP2 protein, with G33 known to form amyloid-like fibrils.
J Colloid Interface Sci
December 2024
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:
Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Ningxia University, Yinchuan, China. Electronic address:
This study presents a novel method for the efficient preparation of peptide-based films through microwave-assisted Lewis acid catalysis (MALC) of buckwheat globulin (BG). The MALC process efficiently degraded BG into small molecular peptides (1.6-1.
View Article and Find Full Text PDFFood Chem
December 2024
Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:
The effects of different valence metal ions on the formation of hydrogels with α-lactalbumin fibrils (ALAF) were comprehensively examined in this study. The properties of hydrogel were generally characterized with water holding capacity (WHC), rheology, texture, DSC and ICP tests. Except FeCl, it was shown that KCl, NaCl, CaCl, MgCl, NiCl, and AlCl at 90 mM could induce the formation of hydrogels with ALAF (40 mg/mL), and hydrogels formed by high valence metal salts had more good properties (viscoelasticity, WHC, and thermal stability), and the amounts of metal ions released from hydrogels with high valence salts after immersion in deionized water for 90 min were all below 10 %.
View Article and Find Full Text PDFCell Rep
December 2024
Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany. Electronic address:
Genetic variants in TMEM106B, coding for a transmembrane protein of unknown function, have been identified as critical genetic modulators in various neurodegenerative diseases with a strong effect in patients with frontotemporal degeneration. The luminal domain of TMEM106B can form amyloid-like fibrils upon proteolysis. Whether this luminal domain is generated under physiological conditions and which protease(s) are involved in shedding remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!