Using structural data derived from crystal fragments of vimentin, three-dimensional models have been constructed for the major coiled-coil segments (1A, 1B and 2B) in epidermal and hair keratin intermediate filament molecules. Similarity and difference distributions arising from the heterodimer nature of the keratin molecules have been calculated, colour-coded for ease of observation and represented as movie clips. This approach has enabled the spatial distributions of the charged and apolar residues to be visualized along the seam between the chains and on the surface of the molecule, thus providing new insights into the features of the IF molecule that are important in assembly. An observation of note is that one face of both segment 1A and segment 1B is predominantly apolar and, furthermore, contains the bulk of the differences in the charged residues that occur between the two chains. The face rotated by 180 degrees contains far fewer apolar residues. This suggests the likely internal face of segments 1A and 1B and, hence, those sequence and spatial features that are important in assembly. In addition, the similarity distributions of the acidic and basic residues display a period of about 19 residues over much of each of the two faces of segment 1B. The two 19-residue periods are out of phase with respect to one another, however, thus leading to the previously recorded 9.51 residue period in the axial distributions of the acidic and the basic residues. The apparent doubling of the period arises because 9.51 residues corresponds to a non-integral number of turns of alpha-helical coiled coil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2007.11.005 | DOI Listing |
J Virol
December 2024
Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
Alongshan virus (ALSV) is a newly discovered pathogen in the family, characterized by a unique multi-segmented genome that is distantly related to the canonical flaviviruses. Understanding the pathogenic mechanism of this emerging segmented flavivirus is crucial for the development of effective intervention strategies. In this study, we demonstrate that ALSV can infect various mammalian cells and induce the expression of antiviral genes.
View Article and Find Full Text PDFbioRxiv
October 2024
Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
The E-cadherin-β-catenin-αE-catenin (cadherin-catenin) complex couples the cytoskeletons of neighboring cells at adherens junctions (AJs) to mediate force transmission across epithelia. Mechanical force and auxiliary binding partners converge to stabilize the cadherin-catenin complex's inherently weak binding to actin filaments (F-actin) through unclear mechanisms. Here we show that afadin's coiled-coil (CC) domain and vinculin synergistically enhance the cadherin-catenin complex's F-actin engagement.
View Article and Find Full Text PDFNat Commun
September 2024
The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
Protein Sci
September 2024
Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
Spatial hindrance-based pro-antibodies (pro-Abs) are engineered antibodies to reduce monoclonal antibodies' (mAbs) on-target toxicity using universal designed blocking segments that mask mAb antigen-binding sites through spatial hindrance. By linking through protease substrates and linkers, these blocking segments can be removed site-specifically. Although many types of blocking segments have been developed, such as coiled-coil and hinge-based Ab locks, the molecular structure of the pro-Ab, particularly the region showing how the blocking fragment blocks the mAb, has not been elucidated by X-ray crystallography or cryo-EM.
View Article and Find Full Text PDFNat Cell Biol
September 2024
Max Perutz Labs, Vienna Biocenter Campus, University of Vienna and Medical University of Vienna, Vienna, Austria.
The nuclear basket attaches to the nucleoplasmic side of the nuclear pore complex (NPC), coupling transcription to mRNA quality control and export. The basket expands the functional repertoire of a subset of NPCs in Saccharomyces cerevisiae by drawing a unique RNA/protein interactome. Yet, how the basket docks onto the NPC core remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!