Adult retinal ganglion cells (RGCs) can survive axotomy and regrow lengthy axons when exposed to lens injury (LI). The neuroprotective and axon-growth-promoting effects of LI have been attributed to an infiltration of activated macrophages into the inner eye and recently also to astrocyte-derived CNTF. The present work reveals that certain purified lens proteins (crystallins) cause the effects of LI. Intravitreal injections of beta- or gamma-crystallins, but not of alpha-crystallin, strongly enhanced axon regeneration from retinal explants in culture, within peripheral nerve grafts or the crushed optic nerve. Deposition of the effective crystallins within the vitreous body was also associated with an influx of circulating macrophages and an activation of retinal astrocytes, Müller cells, and resident microglia. Furthermore beta-crystallin induced CNTF expression in retinal astrocytes and activation of CNTF's major downstream signaling pathway (JAK/STAT3) when intravitreally injected or added to the culture medium ex vivo. Consistently, in culture the addition of beta- and gamma-crystallins to the medium also increased axon regeneration from retinal explants. These results demonstrate that crystallins of the beta/gamma-superfamily are the lens-derived activators of cascades, which lead to axonal regeneration and suggest that their effects might be mediated by astrocyte-derived CNTF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcn.2007.11.002 | DOI Listing |
Acta Biomater
January 2025
Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. Electronic address:
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.
View Article and Find Full Text PDFASN Neuro
January 2025
Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology.
View Article and Find Full Text PDFJ Am Acad Orthop Surg
November 2024
From the Department of Hand and Reconstructive Microsurgery, National University Health System, Singapore (Lee), the Department of Orthopedic Surgery (Sammarco), the Department of Neurosurgery (Spinner), Mayo Clinic, Rochester, MN, and the Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (Shin).
Painful neuromas are a complex clinical condition that results in notable disability and functional impairment after injury to a peripheral nerve. When regenerating axons lack a distal target, they form a stump neuroma. Up to 60% of neuromas are painful because of mechanical sensitivity and crosstalk between nerve fibers.
View Article and Find Full Text PDFHeliyon
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration.
View Article and Find Full Text PDFMater Today Bio
February 2025
Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China.
Diabetic keratopathy (DK), a significant complication of diabetes, often leads to corneal damage and vision impairment. Effective models are essential for studying DK pathogenesis and evaluating potential therapeutic interventions. This study developed a novel biomimetic full-thickness corneal model for the first time, incorporating corneal epithelial cells, stromal cells, endothelial cells, and nerves to simulate DK conditions .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!