Characterization of mre11 loss following HSV-1 infection.

Virology

Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.

Published: March 2008

Herpes simplex virus induces the activation of the cellular DNA double strand break response pathway dependent upon initiation of viral DNA replication. The MRN complex, consisting of Mre11, Rad50 and Nbs1, is an essential component of the DNA double strand break response and other reports have documented its presence at sites of viral DNA replication, interaction with ICP8 and its contribution to efficient viral DNA replication. During our characterization of the DSB response following infection of normal human fibroblasts and telomerase-immortalized keratinocytes, we observed the loss of Mre11 protein at late times following infection. The loss was not dependent upon ICP0, the proteasome or lysosomal protease activity. Like activation of the DSB response pathway, Mre11 loss was prevented under conditions which inhibited viral DNA replication. Analysis of a series of mutant viruses with defects in cleavage and packaging (UL6, UL15, UL17, UL25, UL28, UL32) of viral DNA or in the maturational protease (UL26) failed to identify a viral gene product necessary for Mre11 loss. Inactivation of ATM, a key effector kinase in the DNA double strand break response, had no effect on Mre11 loss and only a moderate effect on HSV yield. Finally, treatment of uninfected cells with the topoisomerase I inhibitor camptothecin, to induce generation of free DNA ends, also resulted in Mre11 loss. These results suggest that Mre11 loss following infection is caused by the generation of free DNA ends during or following viral DNA replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2295170PMC
http://dx.doi.org/10.1016/j.virol.2007.12.005DOI Listing

Publication Analysis

Top Keywords

mre11 loss
24
viral dna
24
dna replication
20
dna double
12
double strand
12
strand break
12
break response
12
dna
11
loss
8
response pathway
8

Similar Publications

Novel mutations found in genes involved in global developmental delay and intellectual disability by whole-exome sequencing, homology modeling, and systems biology.

World J Biol Psychiatry

January 2025

Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Background: Genes associated with global developmental delay (GDD) and intellectual disability (ID) are increasingly being identified through next-generation sequencing (NGS) technologies. This study aimed to identify novel mutations in GDD/ID phenotypes through whole-exome sequencing (WES) and additional analyses.

Material And Methods: WES was performed on 27 subjects, among whom 18 were screened for potential novel mutations.

View Article and Find Full Text PDF

PNKP safeguards stalled replication forks from nuclease-dependent degradation during replication stress.

Cell Rep

December 2024

Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt. Electronic address:

Uncontrolled degradation and collapse of stalled replication forks (RFs) are primary sources of genomic instability, yet the molecular mechanisms for protecting forks from degradation/collapse remain to be fully elaborated. Here, we show that polynucleotide kinase-phosphatase (PNKP) localizes at stalled forks and protects stalled forks from excessive degradation. The loss of PNKP results in nucleolytic degradation of nascent DNA at stalled RFs.

View Article and Find Full Text PDF

Approximately 10-15% of human cancers are telomerase-negative and maintain their telomeres through a recombination-based process known as the alternative lengthening of telomeres (ALT) pathway. Loss of the alpha-thalassemia/mental retardation, X-linked (ATRX) chromatin remodeller is a common event in ALT-positive cancers, but is generally insufficient to drive ALT induction in isolation. We previously demonstrated that ATRX binds to the MRN complex, which is also known to be important in the ALT pathway, but the molecular basis of this interaction remained elusive.

View Article and Find Full Text PDF

TRF2 is an essential and conserved double-strand telomere binding protein that stabilizes chromosome ends by suppressing DNA damage response and aberrant DNA repair. Herein we investigated the mechanisms and functions of the Trf2 ortholog in the basidiomycete fungus Ustilago maydis, which manifests strong resemblances to metazoans with regards to the telomere and DNA repair machinery. We showed that UmTrf2 binds to Blm in vitro and inhibits Blm-mediated unwinding of telomeric DNA substrates.

View Article and Find Full Text PDF

Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!