HIF prolyl hydroxylases (PHD1-3) are oxygen sensors that regulate the stability of the hypoxia-inducible factors (HIFs) in an oxygen-dependent manner. Here, we show that loss of Phd1 lowers oxygen consumption in skeletal muscle by reprogramming glucose metabolism from oxidative to more anaerobic ATP production through activation of a Pparalpha pathway. This metabolic adaptation to oxygen conservation impairs oxidative muscle performance in healthy conditions, but it provides acute protection of myofibers against lethal ischemia. Hypoxia tolerance is not due to HIF-dependent angiogenesis, erythropoiesis or vasodilation, but rather to reduced generation of oxidative stress, which allows Phd1-deficient myofibers to preserve mitochondrial respiration. Hypoxia tolerance relies primarily on Hif-2alpha and was not observed in heterozygous Phd2-deficient or homozygous Phd3-deficient mice. Of medical importance, conditional knockdown of Phd1 also rapidly induces hypoxia tolerance. These findings delineate a new role of Phd1 in hypoxia tolerance and offer new treatment perspectives for disorders characterized by oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.2007.62DOI Listing

Publication Analysis

Top Keywords

hypoxia tolerance
20
induces hypoxia
8
oxidative stress
8
hypoxia
5
tolerance
5
deficiency inhibition
4
oxygen
4
inhibition oxygen
4
oxygen sensor
4
phd1
4

Similar Publications

Background: Pulmonary arterial hypertension (PAH) is a rare but severe and life-threatening condition that primarily affects the pulmonary blood vessels and the right ventricle of the heart. The limited availability of human tissue for research ~most of which represents only end-stage disease~ has led to a reliance on preclinical animal models. However, these models often fail to capture the heterogeneity and complexity of the human condition.

View Article and Find Full Text PDF

Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated.

View Article and Find Full Text PDF

Adipose ZFP36 protects against diet-induced obesity and insulin resistance.

Metabolism

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:

Aims: Obesity, as a worldwide healthcare problem, has become more prevalent. ZFP36 is a well-known RNA-binding protein and involved in the posttranscriptional regulation of many physiological processes. Whether the adipose ZFP36 plays a role in obesity and insulin resistance remains unclear.

View Article and Find Full Text PDF

Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment.

View Article and Find Full Text PDF

Prior heatwave exposure improves hypoxia tolerance in a typical freshwater fish species.

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.

The prevalence of heatwave and hypoxia events and their devastating impacts on aquatic ecosystems and fishery resources reinforces the priority of research to address the resilience and adaption mechanisms to these two stressors in important fish species. However, our understanding of the development of cross-tolerance of these two stressors in fish still limited. Here, we investigated the impacts of prior heatwave exposure on hypoxia tolerance and the underlying mechanisms in silver carp (Hypophthalmichthys molitrix), a species of considerable ecological and commercial importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!