The visualization of two-dimensional dopant profiles and the quantitative analysis of the built-in potential across the p-n junction, DeltaV(p-n), by electron holography were carried out with specimens prepared from the backside ion milling method combined with the focused ion beam technique. It was possible to obtain dopant profiling of the large field of view with low surface damage and gradually changed thickness. From the quantitative analysis using the phase information of electron holography and the thickness information of electron energy-loss spectroscopy, DeltaV(p-n) was estimated to be about 0.78 V assuming that the thickness of the dead layer on both surfaces is 50 nm, which is to show the difference of within 12% from the calculated value. It demonstrates that the backside ion milling method is a very promising specimen preparation technique for the reliable and quantitative analysis of dopant profiling with electron holography.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/dfm037DOI Listing

Publication Analysis

Top Keywords

electron holography
16
backside ion
12
ion milling
12
quantitative analysis
12
two-dimensional dopant
8
specimens prepared
8
prepared backside
8
milling method
8
dopant profiling
8
electron
5

Similar Publications

This review explores a method of visualizing a demagnetization field () within a thin-foiled NdFeB specimen using electron holography observation. Mapping the is critical in electron holography as it provides the only information on magnetic flux density. The map within a NdFeB thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity.

View Article and Find Full Text PDF

Metasurface holography, capable of fully engineering the wavefronts of light in an ultra-compact manner, has emerged as a promising route for vivid imaging, data storage, and information encryption. However, the primary manufacturing method for visible metasurface holography remains limited to the expensive and low-productivity electron-beam lithography (EBL). Here, we experimentally demonstrate the polarization-insensitive visible metasurface holography fabricated by high-throughput and low-cost nanoimprint lithography (NIL).

View Article and Find Full Text PDF

Direct Imaging of Asymmetric Interfaces and Electrostatic Potentials inside a Hafnia-Zirconia Ferroelectric Nanocapacitor.

ACS Appl Mater Interfaces

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

In hafnia-based thin-film ferroelectric devices, chemical phenomena during growth and processing, such as oxygen vacancy formation and interfacial reactions, appear to strongly affect device performance. However, the correlation between the structure, chemistry, and electrical potentials at the nanoscale in these devices is not fully known, making it difficult to understand their influence on device properties. Here, we directly image the composition and electrostatic potential with nanometer resolution in the cross section of a nanocrystalline W/HfZrO (HZO)/W ferroelectric capacitor using multimodal electron microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Interfaces in heterostructures significantly affect the operation of electronic devices, impacting elements like capacitors and transistors used for memory and logic applications.
  • The study uses operando off-axis electron holography to measure trapped charges at dielectric and metal/dielectric interfaces in HfO- and AlO-based nanocapacitors under applied electric fields.
  • The findings reveal a high density of trapped charges at these interfaces that influences the device's electric field distribution, establishing a linear relationship between trapped charges and the applied bias for the first time.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!