It is now 30 years since the beginning of intensive efforts to understand the neurotransmitter biochemistry of dementia as exemplified by Alzheimer's disease and such studies have led to the development of rational treatment strategies, which are continuing to benefit patients. However, as studies became more sophisticated and clinicians rediscovered an interest in dementia, because of the potential for symptomatic treatment, it has become clear that there are several different neurodegenerative conditions that gives rise to dementia syndromes and that each has distinct neurochemical pathology. This has important treatment implications since what works for one may not work for another or at the extreme, may make matters worse. Therefore it is clear that a detailed understanding of the neurotransmitter function in each condition is not merely academic but can lead to rationale drug design and treatment strategies appropriate for that group of patients. Dementia with Lewy bodies (DLB) has clinico-pathological features, which overlap with either AD or Parkinson's disease (PD) as well as features that help to distinguish it, such as fluctuations in cognitive impairment and a higher prevalence of visual hallucinations. On this basis, it would be expected that the neurochemistry would have some similarities with both disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mds.21683 | DOI Listing |
J Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFGeroscience
January 2025
National Institute On Aging, Bethesda, MD, USA.
Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.
View Article and Find Full Text PDFNeurol Ther
January 2025
Department of Medicine, North Tyneside General Hospital, Rake Lane, North Shields, NE29 8NH, UK.
This is an outline for a podcast. Parkinson's Disease (PD) is a progressive neurodegenerative disease in which there is increasing loss of dopamine neurones from the basal ganglia (Simon et al. Clin Geriatr Med.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Background: Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder, with balance instability as a feature of the disease. Balance instability often manifests before the onset of obvious ataxic symptoms in patients. However, current clinical scales exhibit limited sensitivity in characterizing changes in pre-ataxic patients.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Background: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy of ventral intermediate (Vim) nucleus is useful to treat drug-resistant tremor-dominant Parkinson's disease (TdPD), but tremor relapse may occur. Predictors of relapse have been poorly investigated so far.
Objective: The aim of this study is to evaluate the role of clinico-demographic, procedural, and neuroradiological variables in determining clinical response, relapse, and adverse events (AEs) in TdPD after MRgFUS Vim-thalamotomy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!