Background: Sulfation plays an important role both in detoxification and in the control of steroid activity. Studies in rodents have shown that the conversion of dehydroepiandrosterone (DHEA) to DHEA-sulfate is involved in learning and the memory process.

Methods: The effects of a range of plasticizers and related compounds commonly encountered in the environment were evaluated kinetically against human DHEA sulfotransferase (SULT 2A1) and by reverse transcriptase-polymerase chain reaction (RT-PCR) against several enzymes involved in the synthesis of the sulfotransferase cofactor adenosine 3'-phosphate 5'-phosphosulfate (PAPS).

Results: We found that several of the chemicals acted as competitive inhibitors of SULT 2A1 (K(i) for 4-tert-octylphenol is 2.8 microM). Additionally, after treatment of TE 671 cells with 0.005-0.5 microM 4-n-octylphenol, bis(2-ethylhexyl)phthalate, and diisodecyl phthalate, real-time RT-PCR showed dose-dependent decreases in the steady-state mRNA levels of cysteine dioxygenase type I, sulfite oxidase, and 3'-phosphate 5'-phosphosulfate synthase I.

Conclusions: These data suggest that environmental contaminants may exert effects on neuronal function both by direct inhibition of sulfotransferase enzymes and by interrupting the supply of PAPS, which has wider implications for endocrine disruption and xenobiotic metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174413PMC
http://dx.doi.org/10.1289/ehp.9365DOI Listing

Publication Analysis

Top Keywords

sulfotransferase enzymes
8
enzymes involved
8
sult 2a1
8
3'-phosphate 5'-phosphosulfate
8
effects endocrine
4
endocrine disruptors
4
disruptors dehydroepiandrosterone
4
sulfotransferase
4
dehydroepiandrosterone sulfotransferase
4
involved paps
4

Similar Publications

Background: Glycopeptide antibiotics (GPAs) are a very successful class of clinically relevant antibacterials, used to treat severe infections caused by Gram-positive pathogens, e.g., multidrug resistant and methicillin-resistant staphylococci.

View Article and Find Full Text PDF

Estrogen sulfotransferase (SULT1E1), a member of the sulfotransferase family (SULTs), is the enzyme with the strongest affinity for estrogen. Despite significant associations between SULT1E1 and the progression and prognosis of a range of diseases, its functional role and potential mechanisms in lung adenocarcinoma (LUAD) remain unclear. The objective of this study was to examine the potential of SULT1E1 as a biomarker for LUAD.

View Article and Find Full Text PDF

Correlation between quality change and hydrogen sulfide in aquatic product: Detection of hydrogen sulfide and its potential applications using bigeye tuna (Thunnus obesus) model during cold storage.

Food Chem

December 2024

College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; The International Peace Maternity and Child Health Hospital, School of Medicine. Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:

Hydrogen sulfide (HS) is an metabolic product of tuna during the spoilage, and relationship between HS and tuna quality has not been specifically studied. This study detected changes in HS content, HS precursor substances, and related enzymes based on the formation pathway of HS. HS content increased of tuna resulted in significant increases in contents of cystathionine β-synthase, cystathionine γ-lyase, 3-mercapto pyruvate sulfotransferase, cysteine aminotransferase and methionine, while content of cysteine decreased which provided HS formation.

View Article and Find Full Text PDF

Background/aim: Breast cancer is mostly affected by estrogen, which promotes proliferation, tumorigenesis, and cancer progression. Estrogen sulfotransferase (SULT1E1) catalyzes sulfation to inactivate estrogens, whereas steroid sulfatase (STS) catalyzes estrogen sulfate hydrolysis to activate estrogens in breast cancer cells. Three major organosulfur compounds in garlic (Allium sativum L.

View Article and Find Full Text PDF

Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!