Background And Objectives: In previous studies, we found that the ultraviolet filter 4-methyl-benzylidene camphor (4-MBC) exhibits estrogenic activity, is a preferential estrogen receptor (ER)-beta ligand, and interferes with development of female reproductive organs and brain of both sexes in rats. Here, we report effects on male development.
Methods: 4-MBC (0.7, 7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to offspring until adulthood. mRNA was determined in prostate lobes by real-time reverse transcription-polymerase chain reaction and protein was determined by Western blot analysis.
Results: 4-MBC delayed male puberty, decreased adult prostate weight, and slightly increased testis weight. Androgen receptor (AR), insulin-like growth factor-1 (IGF-1), ER-alpha, and ER-beta expression in prostate were altered at mRNA and protein levels, with stronger effects in dorsolateral than ventral prostate. To assess sensitivity of target genes to estrogens, offspring were castrated on postnatal day 70, injected with 17beta-estradiol (E(2); 10 or 50 microg/kg, sc) or vehicle on postnatal day 84, and sacrificed 6 hr later. Acute repression of AR and IGF-1 mRNAs by E(2), studied in ventral prostate, was reduced by 4-MBC exposure. This was accompanied by reduced co-repressor N-CoR (nuclear receptor co-repressor) protein in ventral and dorsolateral prostate, whereas steroid receptor coactivator-1 (SRC-1) protein levels were unaffected.
Conclusions: Our data indicate that 4-MBC affects development of male reproductive functions and organs, with a lowest observed adverse effect level of 0.7 mg/kg. Nuclear receptor coregulators were revealed as targets for endocrine disruptors, as shown for N-CoR in prostate and SRC-1 in uterus. This may have widespread effects on gene regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174398 | PMC |
http://dx.doi.org/10.1289/ehp.9134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!