Mitochondria import hundreds of different precursor proteins from the cytosol. More than 50% of mitochondrial proteins do not use the classical import pathway that is guided by amino-terminal presequences, but instead contain different types of internal targeting signals. Recent studies have revealed an unexpected complexity of the mitochondrial protein import machinery and have led to the discovery of new transport pathways. Here, we review the versatility of mitochondrial protein import and its connection to mitochondrial morphology, redox regulation and energetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246611 | PMC |
http://dx.doi.org/10.1038/sj.embor.7401126 | DOI Listing |
Sci Rep
January 2025
Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.
Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of Molecular and Translational Medicine, University of Brescia, Italy.
Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Biological Chemistry, University of California, Irvine School of Medicine. Electronic address:
Objectives: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Hematology, Taixing People's Hospital Affiliated to Yangzhou University, Taixing, China.
Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.
Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!