TRPV4, a member of the vanilloid subfamily of the transient receptor potential (TRP) channels, is activated by a variety of stimuli, including cell swelling, moderate heat, and chemical compounds such as synthetic 4alpha-phorbol esters. TRPV4 displays a widespread expression in various cells and tissues and has been implicated in diverse physiological processes, including osmotic homeostasis, thermo- and mechanosensation, vasorelaxation, tuning of neuronal excitability, and bladder voiding. The mechanisms that regulate TRPV4 in these different physiological settings are currently poorly understood. We have recently shown that the relative amount of TRPV4 in the plasma membrane is enhanced by interaction with the SH3 domain of PACSIN 3, a member of the PACSIN family of proteins involved in synaptic vesicular membrane trafficking and endocytosis. Here we demonstrate that PACSIN 3 strongly inhibits the basal activity of TRPV4 and its activation by cell swelling and heat, while leaving channel gating induced by the synthetic ligand 4alpha-phorbol 12,13-didecanoate unaffected. A single proline mutation in the SH3 domain of PACSIN 3 abolishes its inhibitory effect on TRPV4, indicating that PACSIN 3 must bind to the channel to modulate its function. In line herewith, mutations at specific proline residues in the N terminus of TRPV4 abolish binding of PACSIN 3 and render the channel insensitive to PACSIN 3-induced inhibition. Taken together, these data suggest that PACSIN 3 acts as an auxiliary protein of TRPV4 channel that not only affects the channel's subcellular localization but also modulates its function in a stimulus-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M706386200DOI Listing

Publication Analysis

Top Keywords

trpv4
9
pacsin
9
cell swelling
8
sh3 domain
8
domain pacsin
8
channel
5
stimulus-specific modulation
4
modulation cation
4
cation channel
4
channel trpv4
4

Similar Publications

Stay connected: The myoendothelial junction proteins in vascular function and dysfunction.

Vascul Pharmacol

January 2025

Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy. Electronic address:

The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH).

View Article and Find Full Text PDF

Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint therapies have revolutionized cancer treatment but face challenges like low response rates and drug resistance, highlighting the need for a better understanding of the tumor microenvironment (TME).
  • Recent studies show that biomechanical forces within the TME significantly impact immune responses and tumor progression, indicating that manipulating these forces could enhance immune activation against tumors.
  • The review discusses key biomechanical mechanisms, the role of the extracellular matrix, and potential clinical applications, aiming to provide insights for discovering new therapeutic targets.
View Article and Find Full Text PDF
Article Synopsis
  • Oral mucosal wounds are susceptible to inflammation and complications due to exposure to microorganisms, which can hinder daily activities and diminish quality of life.
  • A novel therapeutic nanoplatform, DATS@Arg-EA-SA, has been developed to target these wounds by combining guanidinated dendritic peptides with diallyl trisulfide (DATS), providing both antimicrobial and anti-inflammatory effects.
  • This nanoplatform effectively eliminates various bacteria, including drug-resistant strains like MRSA, and enhances healing by promoting the transition of inflammatory cells and alleviating pain, making it a promising solution for oral wound treatment.
View Article and Find Full Text PDF

Structure- and Ligand-Based Virtual Screening for Identification of Novel TRPV4 Antagonists.

Molecules

December 2024

Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.

Transient receptor potential vanilloid (TRPV) 4 is involved in signaling pathways specifically mediating pain and inflammation, making it a promising target for the treatment of various painful and inflammatory conditions. However, only one drug candidate targeting TRPV4 has entered the clinical trials. To identify potential TRPV4 inhibitors for drug development, we screened a library of ion channel-modulating compounds using both structure- and ligand-based virtual screening approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!