A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Entropic and enthalpic contributions to annexin V-membrane binding: a comprehensive quantitative model. | LitMetric

Annexin V binds to membranes with very high affinity, but the factors responsible remain to be quantitatively elucidated. Analysis by isothermal microcalorimetry and calcium titration under conditions of low membrane occupancy showed that there was a strongly positive entropy change upon binding. For vesicles containing 25% phosphatidylserine at 0.15 m ionic strength, the free energy of binding was -53 kcal/mol protein, whereas the enthalpy of binding was -38 kcal/mol. Addition of 4 m urea decreased the free energy of binding by about 30% without denaturing the protein, suggesting that hydrophobic forces make a significant contribution to binding affinity. This was confirmed by mutagenesis studies that showed that binding affinity was modulated by the hydrophobicity of surface residues that are likely to enter the interfacial region upon protein-membrane binding. The change in free energy was quantitatively consistent with predictions from the Wimley-White scale of interfacial hydrophobicity. In contrast, binding affinity was not increased by making the protein surface more positively charged, nor decreased by making it more negatively charged, ruling out general ionic interactions as major contributors to binding affinity. The affinity of annexin V was the same regardless of the head group present on the anionic phospholipids tested (phosphatidylserine, phosphatidylglycerol, phosphatidylmethanol, and cardiolipin), ruling out specific interactions between the protein and non-phosphate moieties of the head group as a significant contributor to binding affinity. Analysis by fluorescence resonance energy transfer showed that multimers did not form on phosphatidylserine membranes at low occupancy, indicating that annexin-annexin interactions did not contribute to binding affinity. In summary, binding of annexin V to membranes is driven by both enthalpic and entropic forces. Dehydration of hydrophobic regions of the protein surface as they enter the interfacial region makes an important contribution to overall binding affinity, supplementing the role of protein-calcium-phosphate chelates.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M707637200DOI Listing

Publication Analysis

Top Keywords

binding affinity
28
binding
14
free energy
12
affinity
9
energy binding
8
contribution binding
8
enter interfacial
8
interfacial region
8
protein surface
8
head group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!