The Wnt/beta-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/beta-catenin signaling pathway. BIM increased beta-catenin responsive transcription (CRT) and up-regulated intracellular beta-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor gamma (PPARgamma) and CAATT enhancer-binding protein alpha (C/EBPalpha) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of beta-catenin protein in 3T3-L1 preadipocyte cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.12.147DOI Listing

Publication Analysis

Top Keywords

3t3-l1 preadipocytes
12
adipocyte differentiation
8
intracellular beta-catenin
8
beta-catenin protein
8
wnt/beta-catenin signaling
8
signaling pathway
8
differentiation activation
8
bisindoylmaleimide suppresses
4
suppresses adipocyte
4
differentiation stabilization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!