Different VGF peptides derived from Vgf, originally identified as a nerve growth factor responsive gene, have been detected in neurons within the central and peripheral nervous system and in various endocrine cells. In the current study, we have evaluated the ability of TLQP-21, a VGF-derived peptide, to protect, in a dose- and time-dependent manner, primary cultures of rat cerebellar granule cells (CGCs) from serum and potassium deprivation-induced cell death. We demonstrated that TLQP-21 increased survival of CGCs by decreasing the degree of apoptosis as assessed by cell viability and DNA fragmentation. Moreover, TLQP-21 significantly activated extracellular signal-regulated kinase 1/2, serine/threonine protein kinase, and c-jun N-terminal kinase phosphorylation, while decreased the extent of protein kinase C phosphorylation, as demonstrated by western blot analysis. In addition, TLQP-21 induced significant increase in intracellular calcium (as measured by fura-2AM) in about 60% of the recorded neurons. Taken together, the present results demonstrate that TLQP-21 promotes the survival of CGCs via pathways involving, within few minutes, modulation of kinases associated with CGCs survival, and by increasing intracellular calcium which can contribute to the neuroprotective effect of the peptide.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.05068.xDOI Listing

Publication Analysis

Top Keywords

vgf-derived peptide
8
cerebellar granule
8
granule cells
8
serum potassium
8
survival cgcs
8
protein kinase
8
kinase phosphorylation
8
intracellular calcium
8
tlqp-21
6
tlqp-21 neuroendocrine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!