AI Article Synopsis

  • Recent research indicates that blood monocytes can carry unique variants of HIV-1 that differ from those in CD4(+) T cells, but their specific biological role is still not fully understood.
  • In a study that used pseudovirus assays, it was found that monocyte-derived HIV-1 envelopes from patients could use various coreceptors, leading to the identification of four distinct viral phenotypes.
  • The findings highlight two main types of viruses: one that can infect only monocyte-derived macrophages and another that is capable of infecting both macrophages and CD4(+) T cells, suggesting that these diverse HIV-1 variants found in monocytes might significantly contribute to the infection process and persistence of the virus.

Article Abstract

Background: Recent studies have shown that blood monocytes harbor human immunodeficiency virus type 1 (HIV-1) variants that are genotypically distinguishable from those in CD4(+) T cells. However, the biological function of monocyte-derived HIV-1 remains unclear.

Methods: Using pseudovirus assay, we analyzed the phenotype conferred by monocyte-derived HIV-1 envelopes from 8 patients.

Results: All pseudoviruses carrying monocyte-derived HIV-1 envelopes used CCR5; however, their use of additional coreceptors delineated 4 phenotypes in which viruses used (1) CCR5 only, (2) CCR5 and CXCR4, (3) CCR3 and CCR5, or (4) multiple coreceptors, including CCR1, CCR3, GPR15, CCR5, and CXCR4. More importantly, we observed 2 distinct cell tropism phenotypes for pseudoviruses carrying monocyte-derived envelopes: (1) monocyte-derived, macrophage-specific R5 (MDMS-R5) virus that, using CCR5 only, could infect monocyte-derived macrophages (MDMs) but not CD4(+) T cells and (2) dual tropic virus that infected both MDMs and primary CD4(+) T cells. We found blood monocytes harboring viruses with multiple phenotypes as early as 25 days before seroconversion and as late as 9 years after seroconversion.

Conclusions: These data suggest that HIV-1 circulating in blood monocytes represents diverse HIV-1 with multiple phenotypes and that MDMS-R5 viruses may play an important role in infection with and persistence of HIV-1 within the monocyte/macrophage lineage.

Download full-text PDF

Source
http://dx.doi.org/10.1086/524847DOI Listing

Publication Analysis

Top Keywords

blood monocytes
16
cd4+ cells
12
monocyte-derived hiv-1
12
monocytes harbor
8
hiv-1 envelopes
8
pseudoviruses carrying
8
carrying monocyte-derived
8
ccr5 cxcr4
8
multiple phenotypes
8
ccr5
7

Similar Publications

Background: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.

View Article and Find Full Text PDF

Hypothermic oxygenated machine perfusion (HOPE) has emerged as a critical innovation in liver transplantation (LTx), offering significant protection against ischemia-reperfusion injury (IRI). This study focuses on quantifying and characterizing immune cells flushed out during HOPE to explore its effects on graft function and post-transplant outcomes. Fifty liver grafts underwent end-ischemic HOPE.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!