Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Decompressive craniectomy is an advanced treatment option for intracranial pressure (ICP) control in patients with traumatic brain injury. The purpose of this study was to evaluate the effect of decompressive craniectomy on ICP and cerebrospinal compensation both within and beyond the first 24 hours of craniectomy.
Methods: This study was a retrospective analysis of the physiological parameters from 27 moderately to severely head-injured patients who underwent decompressive craniectomy for progressive brain edema. Of these, 17 patients had undergone prospective digital recording of ICP with estimation of ICP waveform-derived indices. The pressure-volume compensatory reserve (RAP) index and the cerebrovascular pressure reactivity index (PRx) were used to assess those parameters. The values of parameters prior to and during the 72 hours after decompressive craniectomy were included in the analysis.
Results: Decompressive craniectomy led to a sustained reduction in median (interquartile range) ICP values (21.2 mm Hg [18.7; 24.2 mm Hg] preoperatively compared with 15.7 mm Hg [12.3; 19.2 mm Hg] postoperatively; p = 0.01). A similar improvement was observed in RAP. A significantly lower mean arterial pressure (MAP) was needed after decompressive craniectomy to maintain optimum cerebral perfusion pressure (CPP) levels, compared with the preoperative period (99.5 mm Hg [96.2; 102.9 mm Hg] compared with 94.2 mm Hg [87.9; 98.9 mm Hg], respectively; p = 0.017). Following decompressive craniectomy, the PRx had positive values in all patients, suggesting acquired derangement in pressure reactivity.
Conclusions: In this study, decompressive craniectomy led to a sustained reduction in ICP and improvement in cerebral compliance. Lower MAP levels after decompressive craniectomy are likely to indicate a reduced intensity of treatment. Derangement in cerebrovascular pressure reactivity requires further studies to evaluate its significance and influence on outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/JNS/2008/108/01/0066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!