The structure of the binding site of the stereoselective anti-D-amino acid antibody 67.36 was modeled utilizing web antibody modeling (WAM) and SWISS-MODEL. Although docking experiments performed with an aromatic amino acid as model ligand were unsuccessful with the WAM structure, ligand binding was achieved with the SWISS-MODEL structure. Incorporation of side-chain flexibility within the binding site resulted in a protein structure that stereoselectively binds to the D-enantiomer of the model ligand. In addition to four hydrogen bonds that are formed between amino acid residues in the binding site and the ligand, a number of hydrophobic interactions are involved in the formation of the antibody-ligand complex. The aromatic side chain of the ligand interacts with a tryptophan and a tyrosine residue in the binding site through pi-pi stacking. Fluorescence spectroscopic investigations also suggest the presence of tryptophan residues in the binding site, as ligand binding causes an enhancement of the antibody's intrinsic fluorescence at an emission wavelength of 350 nm. Based on the modeled antibody structure, the L-enantiomer of the model ligand cannot access the binding site due to steric hindrance. Additional docking experiments performed with D-phenylalanine and D-norvaline showed that these ligands are bound to the antibody in a way analogous to the D-enantiomer of the model ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.20522DOI Listing

Publication Analysis

Top Keywords

binding site
24
model ligand
16
ligand
9
acid antibody
8
binding
8
docking experiments
8
experiments performed
8
amino acid
8
ligand binding
8
d-enantiomer model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!