A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri. | LitMetric

In this work, the contributions of triclosan and its metabolite methyl triclosan to the overall acute toxicity of wastewater were studied using Vibrio fischeri. The protocol used in this paper involved various steps. First, the aquatic toxicities of triclosan and methyl triclosan were determined for standard substances, and the 50% effective concentrations (EC(50)) were determined for these compounds. Second, the toxic responses to different mixtures of triclosan, methyl triclosan, and surfactants were studied in different water matrices, i.e., Milli-Q water, groundwater and wastewater, in order to evaluate (i) the antagonistic or synergistic effects, and (ii) the influence of the water matrices. Finally, chemical analysis was used in conjunction with the toxicity results in order to assess the aquatic toxicities of triclosan and its derivative in wastewaters. In this study, the toxicities of 45 real samples corresponding to the influents and effluents from eight wastewater treatment works (WWTW) were analyzed. Thirty-one samples were from a wastewater treatment plant (WWTP) equipped with two pilot-scale membrane bioreactors (MBR), and the influent and the effluent samples after various treatments were characterized via different chromatographic approaches, including solid-phase extraction (SPE), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and SPE coupled to gas chromatography-mass spectrometry (GC-MS). The toxicity was determined by measuring the bioluminescence inhibition of Vibrio fischeri. In order to complete the study and to extrapolate the results to different WWTPs, the toxicity to V. fischeri of samples from seven more plants was analyzed, as were their triclosan and methyl triclosan concentrations. Good agreement was established between the overall toxicity values and concentrations of the biocides, indicating that triclosan is one of the major toxic organic pollutants currently found in domestic wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-007-1779-9DOI Listing

Publication Analysis

Top Keywords

methyl triclosan
20
triclosan methyl
16
triclosan
12
vibrio fischeri
12
acute toxicity
8
bioluminescence inhibition
8
inhibition vibrio
8
aquatic toxicities
8
toxicities triclosan
8
water matrices
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!